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What are supernovae, and what are
they doing in our neutrino
conference?



The peak optical luminosity of a supernova is
comparable to that of an entire galaxy.
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Astronomers classity supernovae according to
their spectra.
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Astronomers classity supernovae according to
their spectra.
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Astronomers classity supernovae according to
their spectra.
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Astronomers classity supernovae according to
their spectra.
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Astronomers classity supernovae according to
their spectra.
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Astrophysicists classify supernovae according to
the underlying physical scenario.
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Astrophysicists classify supernovae according to
the underlying physical scenario.
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Remnants of historical Galactic supernovae
support the two scenarios, which occur with
comparable frequency.
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Remnants of historical Galactic supernovae
support the two scenarios, which occur with
comparable frequency.
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SN 1987A went off in our Galactic neighborhood...
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...and has been observed across the
electromagnetic spectrum, and in neutrinos.
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...and has been observed across the
electromagnetic spectrum, and in neutrinos.
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Why is there neutrino emission
from core-collapse supernovae?



A massive star develops a degenerate core,
which can only get so big...
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A massive star develops a degenerate core,
which can only get so big...
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...before undergoing catastrophic collapse, which
halts when the nuclear equation of state stiffens.



...before undergoing catastrophic collapse, which
halts when the nuclear equation of state stiffens.

Core Collapse and Explosion
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A shock forms and stalls. Neutrino heating and cooling
affect its fate.
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A shock forms and stalls. Neutrino heating and cooling
affect its fate.

Core Collapse and Explosion
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Core-collapse supernova Core-collapse v extravaganza

Massive stellar progenitor e” degeneracy, v pair emission
Infall e” capture / ve emission
Bounce; shock formation, stall, v emission weakens shock,
and revival v absorption strengthens it
Neutron star kick Ve burst at shock breakout
Gravitational waves Vv pair emission from accretion
Kelvin-Helmholtz contraction, Deleptonization and energy release
then cooling of neutron star via v emission

e” capture / ve emission

V pair emission

(If rapid rotation: accretion disk (v pair annihilation helps power jet?)
and jet formation)

(If H/He envelope lost, i.e. if (v emission from accretion disk)
Type Ib/Ic: Gamma-ray burst)
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Core-collapse supernova Core-collapse v extravaganza

Massive stellar progenitor e” degeneracy, v pair emission
Infall e” capture / ve emission
Bounce; shock formation, stall, v emission weakens shock,
and revival v absorption strengthens it
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What goes into simulations of
stellar collapse and its aftermath?



Heating/cooling rates depend on accurate
evolution of neutrino distributions.
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Heating/cooling rates depend on accurate
evolution of neutrino distributions.
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Heating/cooling rates depend on accurate
evolution of neutrino distributions.

> v-Luminosity
l —> Matter Flow

— Gaih Radius
=

Neutrino Direction
@ Cosines

" Heating -
V.+n—op+e
V.+p—on+et Ex

SV N preN
Vs Lo T ol

5 = Coolingy“‘ 7

\ Neutrino
W @ % =% @ Flux
o Protoélt\leutron !
4 v/

%/ :

*e
*
*
» ey
- 3
- .
* .
4 -
-
-
" -
-
ol -
- -
- -
- -
=
=
- -
& -
. e -
= 2. -
. -
»
. : .
- # -
! .
. y, ~ »
L) 4 ] ¥
. »
. ..
- & K .'
.0
1 o
! *

: G

Diffusion Regime I' ain Radius
Neutrinospheres (Semitransparent Regime)




Convection, rotation, and magnetic fields all
come into play.
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Convection, rotation, and magnetic fields all
come into play.
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Convection, rotation, and magnetic fields all
come into play.
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SASI: The stationary accretion shock is intrinsically
unstable and could generate phenomena
traditionally attributed to progenitor rotation.
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SASI: The stationary accretion shock is intrinsically
unstable and could generate phenomena
traditionally attributed to progenitor rotation.
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SASI: The stationary accretion shock is intrinsically
unstable and could generate phenomena
traditionally attributed to progenitor rotation.

Endeve et al. (2008)
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Simulation of collapse and launch of the
explosion involves a wide range of physics.
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Simulation of collapse and launch of the
explosion involves a wide range of physics.

Tangent bundle:

Spacetime includes all three space dimensions, with good
resolution on a wide range of length and time scales.

Momentum space includes all three dimensions, with good
resolution of energies and angles.

Self-gravity is treated with general relativity.
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Simulation of collapse and launch of the
explosion involves a wide range of physics.

Magnetofluid:

The treatment of ideal magnetohydrodynamics must be able to
handle shocks.

Nuclear composition changes involving strong, electromagnetic,
and weak reactions should be tracked in regimes ranging from
fully kinetic through (quasi-)NSE, for a very wide range of species.

An equation of state that includes bulk nuclear matter at finite
temperature in neutron-rich conditions is required.
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Simulation of collapse and launch of the
explosion involves a wide range of physics.

Neutrino distributions:

Transport must be computed in diffusive, decoupling, and free-
streaming regimes.

Neutrino interactions with all fluid components must be included.

Neutrino interactions with other neutrinos and antineutrinos
must be included.

Neutrino flavor mixing should be included (spacetime trajectories
are still classical, but flavor content must be evolved quantum
mechanically on macroscopic scales).
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Different types of simulations address the
different phases of neutrino emission.

Explosion mechanism (~1 second)

Multidimensional, multiphysics

Explosion mechanism and some proto neutron star evolution
(~10 seconds)

Spherical symmetry, multiphysics

Proto neutron star evolution (10s of seconds)

Spherical symmetry, more heavily approximated multiphysics

Flavor mixing outside the proto neutron star (stationary)

Spherical symmetry, neutrinos only, “free streaming” only; high
resolution in neutrino energy and in rare cases angles
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Confidence in the simulations derives from
successful confrontations with observational
data.

Launch of an explosion

Neutron star mass, magnetic field, and kick velocity

Composition of ejecta

Explosion morphology

Neutrino signals

Gravitational wave signals






What is the status of simulations
focusing on the explosion
mechanism?
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V pair emission

(If rapid rotation: accretion disk (v pair annihilation helps power jet?)
and jet formation)

(If H/He envelope lost, i.e. if (v emission from accretion disk)
Type Ib/Ic: Gamma-ray burst)
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1980s: Discovery in (“1.5D” + 1D) simulations (Wilson et al.)
Instabilities to convection and related phenomena expected

Distrust of boosted neutrino luminosities needed for explosions

Early / Mid 1990s: Robust explosions thanks to post-shock
convection in (2D + oD) simulations (Fryer et al., Burrows et al.)

Remnant neutron star mass too small; ejecta too neutron rich

These observables are tied to neutrino transport, whose very
approximate treatment induced premature and overly robust explosions

Late 1990s / Early 2000s: Cold water thrown on the panacea
of post-shock convection by (2D/1D + 1D, 2D + 1D) simulations

(Mezzacappa et al., Janka et al.)
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The delayed neutrino-driven explosion
mechanism has recently made a comeback.

Early 2000s: (1D + 2D) simulations by several groups with
better neutrino transport did not explode

Mid 2000s: Exception—the lowest-mass progenitors (Janka et al.)

Mid 2000s: Magnetorotationally-driven explosions studied in
simulations that were not from first principles and/or less
than complete in their multiphysics (Kotake et al., Burrows et al., ...)

Mid / Late 2000s: “Acoustically-driven” explosions observed

in (2D + “0.5D”) simulations by across a range of progenitor
masses (Burrows et al.)

Mid / Late 2000s: Neutrino-driven explosions observed in
(2D/1. 5D + 1D/ “1. SD”) simulations (Mezzacappa et al., Janka et al.)
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Neutrino radiation transport
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Three groups (ORNL, Garching, Princeton) agree that the
stationary accretion shock instability (SASI) is important to
the explosions they see.

The explosions of the Princeton group are acoustically-driven,
while those of ORNL and Garching are neutrino-driven.

In the acoustic mechanism, the plunging streams associated with the
SASI excite the vibrational modes of the proto neutron star that
radiate sound waves.

In the neutrino-driven explosions, the SASI increases the advection
time, and its plunging streams help maintain neutrino luminosities.

At least in the ORNL simulations, the inclusion of inelastic
neutrino/nucleon scattering makes a noticeable difference.
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There are agreements and disagreements among
recent multiphysics supernova simulations.

The neutrino-driven explosions occur earlier than the acoustic
ones.

The absence of neutrino-driven explosions in the Princeton
simulations may be due to the absence of energy redistribution
processes in the neutrino transport, and the absence of even
approximate general relativity.

The absence of the acoustic mechanism in the ORNL and Garching
simulations could be due to the fact that the neutrino-driven
explosions take off before it can develop.

However there are theoretical reasons to doubt the acoustic
mechanism (Weinberg and Quataert 2007).

The ORNL 15 Mo explosion takes off earlier than the Garching
one, but the latter uses a different, and rotating, progenitor.
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Supernova Modeling: Progress...

Mechanisms beyond delayed neutrino-driven
explosions have been contemplated.

The stationary accretion shock instability (SASI)
is widely agreed to be an important ingredient.

Three groups have performed axisymmetric
simulations with (at least partially) energy-
dependent neutrino transport.

The two groups with the best neutrino transport
see SASI-aided neutrino-driven explosions.
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...and Challenges

The full dimensionality and full physics will
remain computational challenges for many years.

Different approximations, and even different
progenitors, complicate direct comparisons.

Simulations aimed at the explosion mechanism:

Are not evolved past about 1 second of physical time.

Do not include flavor mixing physics.
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Shock Radii vs Time from Bounce Shock Radii vs Time from Bounce
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