
WLCG Authorization WG progress report

Andrea Ceccanti (INFN-CNAF)
on behalf of the WLCG AuthZ WG

GDB meeting
December, 11th 2019

The WLCG Authorization WG

Main objectives:

• Design and testing of a WLCG Membership
Management and Token Translation
service, facilitated by pilot projects with the
support of AARC

• Definition of a token-based authentication
and authorization profile for WLCG

2

https://twiki.cern.ch/twiki/bin/view/LCG/WLCGAuthorizationWG

https://twiki.cern.ch/twiki/bin/view/LCG/WLCGAuthorizationWG

Objective: evolution of the WLCG AAI beyond X.509

3

Token-based AuthN/Z for WLCG
In order to access resources/services, a client
application needs an access token

The token is obtained from a VO (which acts as
an OAuth Authorization Server) using standard
OAuth/OpenID Connect flows

Authorization is then performed at the services
leveraging info extracted from the token:

• Identity attributes: e.g., groups

• OAuth scopes: capabilities linked to access tokens at
token creation time

4

Identity-based vs Scope-based Authorization
Identity-based authorization: the token
brings information about attribute ownership
(e.g., groups/role membership), the service
maps these attributes to a local authorization
policy

Scope-based authorization: the token brings
information about which actions should be
authorized at a service, the service needs to
understand these capabilities and honor
them. The authorization policy is managed at
the VO level

5

{
“iss”: “https://cms.wlcg.example”,
…
“wlcg.groups”: “/cms”

}

{
“iss”: “https://cms.wlcg.example”,
…
“scope”: “storage.read:/ storage.modify:/store”

}

authZ
decision

local policy

authZ
decision

token claims

token claims

https://cms.wlcg.example
https://cms.wlcg.example

Identity-based vs Scope-based Authorization

6

scope-based authZ

identity-based authZ

* Slide courtesy of B. Bockelman

The two models can
coexist, even in the
context of the same
application!

The WLCG Authorization WG timeline

7

* Slide courtesy of H. Short

The WLCG Authorization WG timeline

7

* Slide courtesy of H. Short

INDIGO Identity and Access Management Service
A VO-scoped authentication and
authorization service that

• supports multiple authentication
mechanisms

• provides users with a persistent, VO-scoped
identifier

• exposes identity information, attributes and
capabilities to services via JWT tokens and
standard OAuth & OpenID Connect protocols

• can integrate existing VOMS-aware services

• supports Web and non-Web access, delegation
and token renewal

8

INDIGO Identity and Access Management Service
Selected by the WLCG MB to be the
core of the future, token-based WLCG
AAI

Sustained by INFN for the foreseeable
future, with current support from:

9

The WLCG Authorization WG timeline

10

* Slide courtesy of H. Short

The JWT common profile has reached v1.0
How is authentication and
authorization information encoded
in identity and access tokens?

How is trust established between
parties exchanging tokens?

What’s the recommended token
lifetime?

11

Approach:
rely on existing standards as much as possible,

extend only when needed

https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258#.Xe-9Fi2ZM1I
https://zenodo.org/record/3460258

The WLCG JWT profile
in more detail

WLCG JWT profile: glossary
Define common terms and
meaning

Leverage standard definitions
wherever possible

Map general concepts to our use
cases

13

WLCG JWT profile: token claims
What are the required claims to be included in access tokens and ID tokens, and
what is the meaning.

Common claims: claims commons to access and ID tokens

ID token claims: claims specific to ID tokens (mainly focusing on user authentication
and identity)

Access token claims: claims specific to access tokens (mainly focusing on
authorization capabilities or attributes)

The profile mostly reuses existing, standard claims, with some WLCG specific
additions. Additional, application-specific claims are allowed

14

WLCG specific token claims
wlcg.ver: the version of the WLCG token profile the relying party must
understand to validate the token. Example:

wlcg.ver = “WLCG:1.0”

wlcg.groups: group information about an authenticated end-user, following a
UNIX-like path syntax. Example:

wlcg.groups = {“/cms”, “/cms/itcms”}

15

Other claims used in the profile come from
JWT and OpenID connect core standard

https://tools.ietf.org/html/rfc7519
https://openid.net/specs/openid-connect-core-1_0.html

Scope-based authorization
OAuth provides scopes as a standard mechanism to express authorization
permissions granted to client applications.

In practice, scopes are a set of strings included in an access token that limit what are
the operations that can be authorized by clients presenting such access token.

OAuth scopes are commonly used in industry to define the authorization on service
APIs. Examples:

https://api.slack.com/docs/oauth-scopes

https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-
oauth-apps/#available-scopes

https://developers.google.com/identity/protocols/googlescopes

16

https://api.slack.com/docs/oauth-scopes
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/#available-scopes
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/#available-scopes
https://developers.google.com/identity/protocols/googlescopes

WLCG OAuth scopes
Building on the SciTokens experience, define scopes that would match our
computing use-cases.

First use case: storage access

storage.read: Read data. Only applies to “online” resources such as disk (as opposed to “nearline” such as
tape where the storage.stage authorization should be used in addition).

storage.modify: Change data. This includes renaming files and writing data. This permission includes
overwriting or replacing stored data in addition to deleting or truncating data.

storage.create: Upload data. This includes renaming files if the destination file does not already exist. This
authorization DOES NOT permit overwriting or deletion of stored data.

storage.stage: Cause data to be staged from a nearline resource to an online resource.

17

https://scitokens.org/

Storage scopes and resource paths
Storage scopes may additionally provide a resource path*, which further limits the
authorization. The resource path is provided respecting the following format:

scope:path

Examples:

storage.read:/

storage.modify:/protected

18 * the path is required for selected scopes, more details in the profile

Path semantics
Following the Scitokens model, permissions granted on a path apply transitively
to subpaths, e.g.:

storage.read:/cms

grants read access to the /cms directory and to all its content, but does not grant
read access to the /atlas directory.

This approach is not equivalent with POSIX semantics, but matches well with our
experiments data access authorization models.

19

Path semantics
Following the Scitokens model, permissions granted on a path apply transitively
to subpaths, e.g.:

storage.read:/cms

grants read access to the /cms directory and to all its content, but does not grant
read access to the /atlas directory.

This approach is not equivalent with POSIX semantics, but matches well with our
experiments data access authorization models.

19

Note that implementing this semantic is up to
client applications, i.e. dCache, DPM, EOS, StoRM,

XRootD, etc…., the token just provides a (signed) string!

Scope-based group selection
Use scopes to implement a group selection mechanism for groups equivalent to
the one provided by VOMS, following the approach outlined in the OpenID
Connect standard.

Two types of groups:

• Default groups: whose membership is always asserted (similar to VOMS groups)

• Optional groups: whose membership is asserted only when explicitly requested by the
client application (similar to VOMS roles)

20

https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims
https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims

Scope-based group selection
A parametric wlcg.groups scope is introduced with the following form:

wlcg.groups[:<group_name>]?

With the following rules:

• If the scope does not have the parametric part, i.e. its value is wlcg.groups, the authorization
server will return the list of default groups for the user being authenticated for the target
client.

• if the scope is parametric, i.e. it has the form wlcg.groups:<group_name>, in addition to the
default groups as described in the previous point, the authorization server will also return
the requested group as a value in the wlcg.groups claim if the user is member of such
group.

21

Scope-based group selection
…with the following rules:

• To request multiple groups, multiple wlcg.groups:<group_name> scopes are included in the
authorization request

• The order of the groups in the returned wlcg.groups claim complies with the order in which
the groups were requested

• the returned groups claim will not contain duplicates

This seems complex, but it’s the attribute selection mechanism we use everyday
with VOMS

22

Scope-based group selection
…with the following rules:

• To request multiple groups, multiple wlcg.groups:<group_name> scopes are included in the
authorization request

• The order of the groups in the returned wlcg.groups claim complies with the order in which
the groups were requested

• the returned groups claim will not contain duplicates

This seems complex, but it’s the attribute selection mechanism we use everyday
with VOMS

22

Note that implementing this semantic is (mostly) up to
the WLCG AuthZ server (i.e., IAM).

Scope-based group selection: examples
An authorization request with the following scope:

scope=wlcg.groups:/cms/uscms wlcg.groups:/cms/ALARM wlcg.groups

will return the following wlcg.groups claim

"wlcg.groups": ["/cms/uscms","/cms/ALARM", “/cms"]

assuming /cms is the only default group defined at the authorization server

23

Trust & security
The profile document also provides recommendations on token lifetimes and
trust establishment and other important aspects

24 * Slide courtesy of H. Short

https://docs.google.com/document/d/1cNm4nBl9ELhExwLxswpxLLNTuz8pT38-b_DewEyEWug/edit#heading=h.3sywvn92h9qr

Implementing the JWT profile

What does it mean supporting the WLCG profile?
Depends on the role of your service:

• OAuth resource server
- The typical example is an HTTP Restful API
- Does not need the ability to start an OAuth/OpenID Connect authentication flow

- Does not need to be registered in IAM

- Needs to extract token from incoming requests and validate token and map authn/authz info in the token to local authz
enforcement

• OAuth/OpenID Connect client:
- The typical example is a Web application (a portal) that wants to delegate authentication to IAM

- Needs to be registered in IAM

- Needs the ability to start OAuth/OpenID Connect auhn/z flow, store securely client credentials, validate tokens, refresh them when
needed …

• Some services will naturally fit in both roles defined above

• e.g., RUCIO, FTS, dCache

26

What does it mean supporting the WLCG profile?
As an OAuth resource server (RS):

• Ability to extract an access token from an incoming HTTP request

• Ability to parse and validate the incoming access token
- identify if it has been issue by a trusted and recognized authorization server

- verify temporal validity

- verify signature, following OAuth/OIDC conventions

• Ability to honour access token audience restrictions
- the RS needs the ability to identity itself with (one or multiple) audience labels and honour audience

restrictions in access tokens

• Ability to map defined scopes to local authZ
- e.g., storage.read:/cms grants read access to the /cms namespace (and any subdirectory)

• Ability to map group-based to local authZ
- e.g., /cms group membership as stated grants read access to the /cms namespace

27

What does it mean supporting the WLCG profile?
As an OAuth resource server (RS):

• Ability to extract an access token from an incoming HTTP request

• Ability to parse and validate the incoming access token
- identify if it has been issue by a trusted and recognized authorization server

- verify temporal validity

- verify signature, following OAuth/OIDC conventions

• Ability to honour access token audience restrictions
- the RS needs the ability to identity itself with (one or multiple) audience labels and honour audience

restrictions in access tokens

• Ability to map defined scopes to local authZ
- e.g., storage.read:/cms grants read access to the /cms namespace (and any subdirectory)

• Ability to map group-based to local authZ
- e.g., /cms group membership as stated grants read access to the /cms namespace

27

This is typically
sorted out by
OAuth/OIDC

libraries

What does it mean supporting the WLCG profile?
As an OAuth/OpenID Connect client:
• Ability to store client credentials securely

• Ability to start and manage an OAuth/OpenID Connect flow to obtain tokens from the
Authorization Server (i.e., IAM)
- Authorization code flow, for most use cases

- Refresh token flow, to refresh access tokens about the expire

- Client credentials flow, to obtain tokens linked not linked to user identities, but to the service itself

• Ability to parse and validate ID tokens resulting from OpenID Connect authentication flows in
compliance with the OpenID connect spec

• Ability to honour audience restrictions
- the ability to identity itself with (one or multiple) audience labels and honour audience restrictions in ID

tokens

• (Optional) Ability to implement Level Of Assurance (LoA) policies

28

This is typically sorted out by
OAuth/OIDC libraries

The WLCG IAM instance
A WLCG-managed, experiment-agnostic VO in support
of WLCG development, integration and testing
activities focusing on the transition to token-based
AuthN/Z

https://wlcg.cloud.cnaf.infn.it

Deployed at INFN-CNAF, integrated with CERN SSO

• Provides support for VOMS and token/based AuthN/AuthZ

• Supports the WLCG JWT profile v1.0

Reference for WLCG token-based authn/z integration activities

29

https://wlcg.cloud.cnaf.infn.it
https://zenodo.org/record/3460258

Ongoing integration activities
DOMA Third-Party Copy WG

• Token-based authN/Z testbed leveraging the WLCG IAM instance in support of bulk transfers
- RUCIO, FTS, XRootD, dCache, DPM, Echo, StoRM, EOS

• Now focus is on integrating support for the WLCG JWT profile, and on the flows that must be
used to obtain/exchange tokens with IAM (see this draft document and this slide deck)

• Token-based AuthN/Z “hackathon” @ CERN in January

- more on this in next slide

HTCondor

• Successful submission of a job using a token issued by IAM demonstrated last month at
CHEP

30

https://docs.google.com/document/d/1HpF_u0bulJaWyh26UoTmUnUULRdGWVwznBUE_VkkH3s/edit#heading=h.xou4bpjtftsv
https://indico.cern.ch/event/858953/contributions/3617085/attachments/1956518/3250785/DOMA-TPC-041219.pdf

Token-based AuthN/Z “Hackathon” @ CERN in January

What: sort out as many problems as possible while discussing things and coding
together in a room with the objective of demonstrating a full stack HTTP X509-
free data transfer management chain

• RUCIO->FTS->SEs

• SEs: EOS, dCache, DPM, StoRM, XRootD, Echo

Who: Developers of the above components

When/Where: January, 16th 2020 @ CERN

31

Conclusions
Huge progress in the recent months towards enabling the transition to token-based
AuthN/Z

WLCG JWT profile has reached v1.0

• Ongoing work to integrate support for it in many key Grid middleware components

IAM WLCG instance available as a reference for integration activities

• implementing the WLCG JWT profile

Hackathon @ CERN in January focused on enabling X509-free data management

32

Thanks for your attention.
Questions?

References
WLCG Authorization WG: https://twiki.cern.ch/twiki/bin/view/LCG/
WLCGAuthorizationWG

The WLCG JWT profile: https://zenodo.org/record/3460258

OAuth/OIDC for DOMA TPC transfers: https://indico.cern.ch/event/858953/
contributions/3617085/attachments/1956518/3250785/DOMA-TPC-041219.pdf

IAM @ GitHub: https://github.com/indigo-iam/iam

IAM documentation: https://indigo-iam.github.io/docs

34

https://twiki.cern.ch/twiki/bin/view/LCG/WLCGAuthorizationWG
https://twiki.cern.ch/twiki/bin/view/LCG/WLCGAuthorizationWG
https://zenodo.org/record/3460258
https://indico.cern.ch/event/858953/contributions/3617085/attachments/1956518/3250785/DOMA-TPC-041219.pdf
https://indico.cern.ch/event/858953/contributions/3617085/attachments/1956518/3250785/DOMA-TPC-041219.pdf
https://github.com/indigo-iam/iam
https://indigo-iam.github.io/docs

