
Dynafed - federating, aggregating

!1

Slightly oriented to cloud storage in grid workflows
June 2019

F.Furano
O.Keeble

What’s Dynafed
• Dynafed is a browser-friendly realtime scalable aggregator of HTTP/

WebDAV/S3/MS-Azure metadata sources
• Aggregates/caches/presents metadata, redirects clients to resources for

reading or writing. Geography-aware redirections
• Does not need central persistency (e.g. DBs), does everything on the fly and

caches the information
• Technically it can both support or accommodate external DBs 

• Realtime detection of sites up-ness, no need of installing anything special at

the sites
• Presentation is through WebDAV and HTML
• Very threaded, very asynchronous, works fine in LAN and WAN
• Project started in EMI, 2011
• DAVIX used to be its internal client, then became a successful project per se

!2

!3

Historical
DESY Prototype:
14/15 LHCb sites
60 ATLAS sites

Geography-based
Client-aware redirections

Flexible authentication/
authorization, friendly

with identity federations

Realtime detection of
sites’ up-ness

Makes S3/Azure storage
easy to use and mix

Scales it up and applies
uniform security

.../dir1/file1

.../dir1/file2
.../dir1/file2
.../dir1/file3

Site A
(WebDAV/S3/Azure)

Site B
(WebDAV/S3/Azure)

/dir1
/dir1/file1
/dir1/file2
/dir1/file3

!3

Historical
DESY Prototype:
14/15 LHCb sites
60 ATLAS sites

Geography-based
Client-aware redirections

Flexible authentication/
authorization, friendly

with identity federations

Realtime detection of
sites’ up-ness

Makes S3/Azure storage
easy to use and mix

Scales it up and applies
uniform security

.../dir1/file1

.../dir1/file2
.../dir1/file2
.../dir1/file3

With 2
replicas

Site A
(WebDAV/S3/Azure)

Site B
(WebDAV/S3/Azure)

/dir1
/dir1/file1
/dir1/file2
/dir1/file3

On the fly friendly
visualization

 Full WebDAV
access

Redirection-based
Robust against

failures
Fully scalable

Federator

Plugin

Frontend
(Apache2+DMLite)

Plugin Plugin Plugin

SESE SE

Metadata
cache

SE

!4

Federator

Plugin

Frontend
(Apache2+DMLite)

Plugin Plugin Plugin

SESE SE

Metadata
cache

SE

!4

Federator

Plugin

Frontend
(Apache2+DMLite)

Plugin Plugin Plugin

SESE SE

Metadata
cache

SE

!4

Federator

Plugin

Frontend
(Apache2+DMLite)

Plugin Plugin Plugin

SESE SE

Metadata
cache

SE

!4

Federator

Plugin

Frontend
(Apache2+DMLite)

Plugin Plugin Plugin

SESE SE

Metadata
cache

The cache
remembers

what happened

The next metadata
interactions

will very likely be
fed by the cache

The cache can be
shared

SE

!4

Strong points
• Very good metadata performance and scalability
• Agility in setting up and maintaining federations of

any size
• So seamless that it’s difficult to explain that there’s

something behind the WWW browser

• At some point someone realized that adding S3
support was opening very interesting possibilities.
Then also Azure came in the same way

!5

Dynamic Cloud support
• Dynafed can federate any number of remote S3 buckets or

Azure shares (also together with other regular WebDAV)
• This is not a proxy, data access works with

redirections
• This fed will appear as a unique read/write WebDAV

storage, totally seamless, fast and scalable
• Presents in a familiar way the weird S3/Azure

implementation of “folders” and hierarchical content

• Object stores are not “flat”, that’s an urban legend. They
have a different behaviour

!6

Dynamic Cloud support
• Clients/Users/jobs do not need to know about S3 or

Azure mechanics, just use a clean URL and valid
credentials in a decent client (i.e. curl with many
crazy parms or davix)

• The keys of the buckets stay secret in the Dynafed
frontend

• Clients/Users/jobs accessing data do not need to
know storage keys

• Clients/Users/jobs transparently receive short-
term delegations encrypted in the URL signatures

!7

Dynamic Cloud support
• Tested with MS Azure, Amazon S3, Ceph S3 implementations
• A federation of “object stores” can apply uniform, flexible

authorization/authentication
• Authentication: Can be X509, login/pwd, OpenID-Connect,

Macaroons, in principle whatever mechanism that works
as an Apache module

• Authorization: flexible mechanisms to define rules of
basically any kind, making choices on the information
about the client’s request… headers, identity, OIDC
information, path…

• The pioneer of these mechanisms has been the BOINC Data
Bridge, needing to match username/pwd with X509/VOMS

!8

Dynafed and HEP workflows
• Some HEP workflows can use HTTP resources, e.g.

• FTS transfers
• Rucio-based things

• These frameworks have challenging requirements for
• Checksum support
• Third-party copy (TPC)

• This has improved recently in Dynafed

!9

Checksum support in Dynafed
• Dynafed does not own or host the files, they reside

elsewhere
• When asked for a checksum, Dynafed can:

• collect checksums from the endpoints that support
checksumming (HTTP/Dav only), see options
• locplugin.<ID>.candochecksums
• locplugin.<ID>.checksumcalc

• OR running a helper hook that is supposed to do
something to return the requested checksum

!10

Checksum helper
• Any executable able to process the given

parameters and return a checksum on stdout
• <site LFN> <checksumtype>
• The output must be

!11

>>>>> HASH <result>\n

Ideas for a checksum helper
• Dead simple: use gfal-sum to stream the file through

dynafed. Good only for a proof-of-concept
• Pragmatic: Use pwdless ssh to spawn the calculation

through a simple cluster
• Glamour: Use AWS Lambda to calculate the checksum

on the cloud where the file resides

• This tool (for S3/Azure) could also cache the checksum
into the file’s ext attributes
• Before recalculating a checksum it would check the ext

attributes and save a lot of time

!12

COPY verb in Dynafed
• Now dynafed supports the COPY verb, hence it

can be requested to push/pull a file elsewhere

• In response to it it can invoke a callout that has
the responsibility of triggering the data movement

• NOTE: “triggering” does not necessarily mean
“perform”. Performing it can be offloaded… like in
the checksum case

!13

“Fourth-party” copy callout
• A callout is the action of executing something (a command, a script…) locally in the

machine running Dynafed
• This callout has the responsibility of triggering the data movement described (and

already authorized) by the passed parameters

• The simple-minded deployment could be just to invoke the default script, which will
use gfal-copy to move the data

• Hence user->gfal-copy->dynafed->gfal-copy->endpoint
• The script (actually, gfal2) is able to forward the COPY request to one of the

endpoints, making the COPY a “fourth party COPY”
• A better implementation could run the same helper script in a set of companion

“datamover” machines, using pwd-less SSH

• These things are simple to describe, they also need some devops cleverness to be
put in place

!14

Two callouts: push/pull
• copypull: to copy a file INTO this dynafed’s

endpoints
• copypush: to copy a file FROM this dynafed’s

endpoints

• The parameters are quite normal things, however
the combinations of the details can be
challenging to master

!15

The push/pull parameters

!16

cksumcheck: an integer, whose value is nonzero if the copy has to verify the
checksums
cksumtype: a string identifying the checksum type that has to be used, e.g. adler32

srcURL: the full URL of the source file
destURL: is the full URL of the destination file or the local logical file name in
case of a pull copy

x509proxypath: a local path pointing to the x509 delegated proxy certificate of the
user that requested the file copy
auth: additional authorization information. In the case of Apache HTTPD this field
comes from the content of the Authorization header of the original COPY request.
Useful for macaroons or OIDC

additional optional parameters: these are filled by copying the value of selected
HTTP headers. To activate this mechanism, the Ugr configuration must provide one or
more directives
glb.filepull.header2params[] or glb.filepush.header2params[] respectively for file
push or pull requests.

The 5GB tricky detail
• Files larger than 5GB can be PULLED into cloud storage

backends only if the PULL script is given as destination the
dynafed URL, not the endpoint

• This is because uploading big files into cloud storage must follow the
proprietary S3 or Azure workflow

• This workflow is supported by Dynafed, the script ultimately must PUT
to dynafed, not elsewhere :-)

• In this case Dynafed and Davix shield the application from the
technicalities of the S3 or Azure transactions.

• These things are well described in the Dynafed whitepaper and in the
abundant comments of the example scripts

!17

OIDC/OAuth2 support
• Dynafed has added support for two OAuth2 modes of client

authentication
• OAuth 2.0 Resource Server (RS)

• Validates bearer access tokens sent by OAuth 2.0 clients.
• CLI–oriented solution
• No browser required
• Client provides the bearer token in the Authorization header

• OpenID Connect Relying Party (RP)
• Authenticates users against an OpenID Connect Provider

• Requires a browser
• User is redirected for interactive login

• Dynafed receives user identity information from the IdP in an ID
Token

!18
27/06/2019 eXtreme DataCloud

OIDC/OAuth2 support and
configuration
• Dynafed can now support 3 authentication systems - X509, OIDC and OAuth2

• These are all implemented by the relevant apache modules
• They are configured at the Dynafed level by establishing a different

namespace prefix for each auth system
• Add the following to /etc/ugr/ugr.conf

• glb.n2n_pfx: /oauth2 /x509 /oidc
• Configured in apache by creating a separate prefix (<Location /...>) for

each system
• Each then configured for a particular auth

• AuthType oauth20
• Relevant attributes are then available for authorisation decisions

• In this way, the different authentication front-ends share the same Dynafed
cache.

!19
27/06/2019 eXtreme DataCloud

Free-space aware writing
• Dynafed can now redirect writes only to endpoints which

advertise enough (configurable) free space
• Based on “dynafed_storagestats” from Fernando Fernandez

Galindo
• https://github.com/hep-gc/dynafed_storagestats
• Thank you for this contribution!

• dynafed_storagestats is run periodically (e.g. cron) and populates
Dynafed's memcached cache

• Dynafed can now consult this information when redirecting a write
• Enabled and configured via /etc/ugr/ugr.conf
• glb.minfreespace: 10

!20
27/06/2019 eXtreme DataCloud

Dynafed
• An advanced system that now is quite consolidated
• Extremely flexible and scalable, can be used in many ways
• This does not intend to be an instruction manual
• Many items have been left out

• E.g. the macaroons support. Working fine, usable only for pure
cloud storage backends

• If you need info on a specific subject, just ask

!21

http://lcgdm.web.cern.ch/dynafed-dynamic-federation-project

https://gitlab.cern.ch/lcgdm/dynafed/raw/develop/doc/whitepaper/Doc_DynaFeds.pdf?inline=false

http://lcgdm.web.cern.ch/dynafed-dynamic-federation-project
https://gitlab.cern.ch/lcgdm/dynafed/raw/develop/doc/whitepaper/Doc_DynaFeds.pdf?inline=false

Next phases
• Support for production deployments

• Checksums
• 4th party copy

• Waiting for OIDC to come
• with the WLCG profile
• Unlikely that it needs developments for that, likely support

• Integration, consolidation, support

• EPEL 8

!22

