
A. Valassi – Infrastructure for container builds Benchmarking Pre-GDB, CERN – 8 Oct 2019 1

Benchmarking WLCG resources
using HEP experiment workloads:
infrastructure for container builds

Andrea Valassi (CERN IT-DI)
On behalf of the WG

Benchmarking Pre-GDB, 8 October 2019 – CERN

https://indico.cern.ch/event/739897

https://indico.cern.ch/event/739897

A. Valassi – Infrastructure for container builds Benchmarking Pre-GDB, CERN – 8 Oct 2019 2

Recap: project packages and repositories

• Three repositories under https://gitlab.cern.ch/hep-benchmarks:

–hep-workloads (the common infrastructure and individual workloads)

–hep-score (single-number benchmark aggregator from several WLs)

–hep-benchmark-suite (automate execution, collect results in a database)

• Outline: in this talk I will essentially describe the internals of hep-workloads

–The other two packages will be described in subsequent talks

https://gitlab.cern.ch/hep-benchmarks

A. Valassi – Infrastructure for container builds Benchmarking Pre-GDB, CERN – 8 Oct 2019 3

What enables doing this now is the

availability of container technology!

Recap: an alternative to HEP-SPEC06,

benchmarking CPUs using HEP workloads

• For comparison, how did we converge on HEP-SPEC06 in the past?

– We analysed several subsets of the SPEC benchmark suite

– We chose one with high correlation and similar patterns as HEP WLs

• By construction, using HEP workloads directly is guaranteed to give

– A score with high correlation to the throughput of HEP workloads

– A CPU usage pattern that is similar to that of HEP workloads

– For event generation, detector simulation, digitization, reconstruction….

ALICE

gen-sim

ATLAS

gen

ATLAS

sim

CMS

gen-sim

CMS

digi

CMS

reco

LHCb

gen-sim

hep-workloads

hep-score

A. Valassi – Infrastructure for container builds Benchmarking Pre-GDB, CERN – 8 Oct 2019 4

Why many independent containers

in hep-workloads ?

1. Technical: encapsulation
– Each container includes all that is needed to run one workload, and only that

2. More fundamental: preserve the many degrees of freedom in the problem
– “A computer system’s performance cannot be characterized by a single number

or a single benchmark. […] Many users (decision makers), however, are looking

for a single-number performance characterization. […] There are no simple

answers. Both the press and the customer, however, must be informed about

the danger and the folly of relying on either a single performance number or a

single benchmark.”
Kaivalya M. Dixit, Overview of the SPEC Benchmarks,

in J. Gray (Ed.), The Benchmark Handbook for Database and Transaction Systems, 1993.

– Each HEP workload stresses different components of a computer system
• Some are I/O intensive, others not; some are vectorized, others not…

• Our infrastructure provides a single benchmark number (hep-score), but keeps the

possibility to separately measure and record different WL benchmarks independently

https://jimgray.azurewebsites.net/benchmarkhandbook/toc.htm

A. Valassi – Infrastructure for container builds Benchmarking Pre-GDB, CERN – 8 Oct 2019 5

The hep-workloads containers

• Encapsulation: for each HEP workload, build a standalone benchmark container
– Portable and self-contained (no need for network connectivity)

– As small as possible (include all dependencies needed to run the workload, and only those)

– Doing always the same thing (results should be as reproducible as possible)

• Components of each HEP workload container
– Software repository (O/S and /cvmfs)

– Input data (event and conditions data)

– An orchestrator script (benchmark driver)
• Sets the environment

• Runs (many copies of) the application
– Each copy may be multi-process or multi-threaded

• Parses the output to generate scores (json)

A. Valassi – Infrastructure for container builds Benchmarking Pre-GDB, CERN – 8 Oct 2019 6

The hep-workloads CI and registry

• Individual HEP workload container images are built and distributed via gitlab

– The gitlab CI (continuous integration) builds and tests new images on commit

– If the build is successful, the CI pushes these (versioned) images to the gitlab registry

• The images are built as Docker containers

– But they can be executed both via Docker and Singularity

$ docker run -v /my_host_path:/results $IMAGE

$ singularity run -B /my_host_path:/results docker://$IMAGE

– A json summary and detailed logs are then found in /my_host_path on the host system

A. Valassi – Infrastructure for container builds Benchmarking Pre-GDB, CERN – 8 Oct 2019 7

Build procedure in the hep-workloads CI

• Main idea: experiment software is on /cvmfs, discover what is needed in a dry run

• Enabling technology: cvmfs tracing mechanism

• Starting from a gitlab repo containing only the CI and WL orchestrator scripts:

1. Build an interim image, where /cvmfs is the standard network-connected service

2. Run the WL from that image, generating cvmfs traces listing which files were accessed

3. Build the final standalone image, where /cvmfs is a local folder, copying all relevant files

4. Test the WL from that image (both in Docker and Singularity), push it to the gitlab registry

1 2 3 4

A. Valassi – Infrastructure for container builds Benchmarking Pre-GDB, CERN – 8 Oct 2019 8

The hep-workloads builder image

• Individual WL images (interim and final) are built within a builder image

– This is common for all workloads and changes very infrequently

• Consistently check error, save logs and cvmfs traces for all workloads

– It contains docker, singularity and all other build and tests packages

– It is itself built by the CI, using standard (shared) runners at CERN

• Technicality: actually the builder image starts another builder image

– And within that internal builder image it builds individual workloads

– This additional “inception” is needed to manage docker volumes and privileges…

1 2 3 4
WL image build process

within the builder image

A. Valassi – Infrastructure for container builds Benchmarking Pre-GDB, CERN – 8 Oct 2019 9

The hep-workloads gitlab CI workers cluster

• We chose to set up our own (non-shared) CI workers

– Docker privileged mode, keep large logs, define custom host volumes…

– Individual WLs are built within the builder image running on these nodes

• In time we moved from two standalone nodes to a Puppet cluster (4 nodes)

– More consistent setup, easier maintenance

– The standalone nodes were often getting full disks, or docker network issues

• Each node is a VM with four logical processors (`nproc` equals 4)

– Each node can only build one workload at a time

• Because the build of MP and MT workloads may need all four virtual processors

– We now do not always run many WL copies at build time to saturate the node

• Storage management involves caching and cleanup

– Docker and singularity caches make the build process less storage hungry

– Regular cleanups after each build seem ok to keep space under control so far

A. Valassi – Infrastructure for container builds Benchmarking Pre-GDB, CERN – 8 Oct 2019 10

Docker layers in hep-workloads images

• Docker container images are always made up of layers
– Translating Docker images to Singularity also keeps this layer structure unchanged

– From the bottom up, these layers can be cached until the first difference is found

• The hep-workloads CI builds these layers to make them as cacheable as possible
– The bottom layers contain what is expected to change least often

– The top layers may change more frequently (across different workloads or versions)

– Advantage in the CI: faster builds/tests, save storage space (both Docker and Singularity)
• Advantage for users: faster tests, save storage space (if Docker and Singularity caches are set up)

O/S: Scientific Linux CERN 6

O/S add-ons via yum install

Experiment WL data files: /data

Experiment WL software: /cvmfs

Common and WL scripts: /bmk

Changes less often:

caching more likely

Changes more often:

caching less likely

A. Valassi – Infrastructure for container builds Benchmarking Pre-GDB, CERN – 8 Oct 2019 11

The hep-workloads output report

JSON document with the essential information

– Configuration parameters

• #copies, #threads, #events, status

– Benchmark score: total node throughput

• Events per wall second (sum over all copies)

– Or events per CPU second in some cases

• Details for each application copy

– Statistics: mean, median, max, min…

– Additional metrics for performance studies:

• Memory and CPU utilization

– Workload metadata

• Description, version, checksum

The JSON produced by each individual WL

are then embedded in the overall JSON

produced by the hep-score aggregator

A. Valassi – Infrastructure for container builds Benchmarking Pre-GDB, CERN – 8 Oct 2019 12

Many hep-workloads flavors,

one common policy and one common driver

• General idea: enforce some commonality between different WLs

– Common naming convention on scripts, images, directories…

– Derive each WL orchestrator from a common bmk driver

• Consistent approach within the common bmk driver

– Command line argument interpretation

– Spawn several WL copies and check status code

– Parse results and produce consistent json summaries

• Work in progress in finalizing the json schema

– Validate json summaries (e.g. linting)

A. Valassi – Infrastructure for container builds Benchmarking Pre-GDB, CERN – 8 Oct 2019 13

Within hep-workloads containers:

non-root user, read-only /cvmfs

• Within each container, the entry-point driver script is executed as root

–For simplicity (access to /var, /tmp…), but this could be changed

• This led to a peculiar issue: the local /cvmfs could be overwritten

–The ATLAS sim workload overwrote conditions on /cvmfs and failed

• Not clear why the ATLAS software does that… but a fix was needed

• Workaround: make /cvmfs read-only when executing the workloads

–Create a new user ‘bmkuser’ in the Dockerfile

–Run all WLs as bmkuser via ‘su bmkuser’ in the common bmk driver

A. Valassi – Infrastructure for container builds Benchmarking Pre-GDB, CERN – 8 Oct 2019 14

The hep-workloads containers:

available images and work in progress

• GEN and SIM workloads are available for all four LHC experiments

• DIGI and RECO workloads are available for CMS, work in progress for ATLAS

• Download the container images from the gitlab registry:

– gitlab-registry.cern.ch/hep-benchmarks/hep-workloads/alice-gen-sim-bmk:latest

– gitlab-registry.cern.ch/hep-benchmarks/hep-workloads/atlas-gen-bmk:latest

– gitlab-registry.cern.ch/hep-benchmarks/hep-workloads/atlas-sim-bmk:latest

– gitlab-registry.cern.ch/hep-benchmarks/hep-workloads/cms-gen-sim-bmk:latest

– gitlab-registry.cern.ch/hep-benchmarks/hep-workloads/cms-digi-bmk:latest

– gitlab-registry.cern.ch/hep-benchmarks/hep-workloads/cms-reco-bmk:latest

– gitlab-registry.cern.ch/hep-benchmarks/hep-workloads/lhcb-gen-sim-bmk:latest

https://gitlab.cern.ch/hep-benchmarks/hep-workloads/container_registry

A. Valassi – Infrastructure for container builds Benchmarking Pre-GDB, CERN – 8 Oct 2019 15

Outlook: hep-workloads containers

on heterogeneous resources (HPCs, GPUs…)

• All of the work on hep-workloads described so far refers to x86 architectures

• WLCG computing is expected to go well beyond x86 in the medium term future

– Non-x86 HPC supercomputers (ARM, Power9, GPUs…) will probably play a large role

– The container build approach I described applies also in these cases with a few changes

• By and large, the software of the experiments is not yet production-ready for this

– Porting and validating it (and having the people to do that) is one of the first priorities

– But our new benchmarks must be ready in time to do the accounting for these resources!

• Specifically: work is in progress on a HEP workload container involving GPUs

– CMS event reconstruction, with optional GPU offload of pixel tracking (see Patatrack talk)

A. Valassi – Infrastructure for container builds Benchmarking Pre-GDB, CERN – 8 Oct 2019 16

Conclusions

• After 10 years, HEP-SPEC06 no longer describes well enough HEP workloads

• Our solution: build a new benchmark directly from HEP workload throughputs

– Enabling technologies: Docker containers and cvmfs tracing mechanism

• Implementation of image builds is based on gitlab CI runners

• Status: individual containers exist for GEN-SIM workloads of all four experiments

– And for the DIGI and RECO of CMS (and soon for ATLAS too)

• Outlook: can extend the idea and implementation to HPCs and non-x86 resources

– A container for a workload with optional GPU offload (CMS Patatrack) is being prepared

