Benchmarking WLCG resources
using HEP experiment workloads:
Infrastructure for container builds

Andrea Valassi (CERN IT-DlI)
On behalf of the WG

Benchmarking Pre-GDB, 8 October 2019 — CERN
https://indico.cern.ch/event/739897

EE/}‘W A. Valassi — Infrastructure for container builds Benchmarking Pre-GDB, CERN — 8 Oct 2019

~7 -

https://indico.cern.ch/event/739897

Recap: project packages and repositories

* Three repositories under https://gitlab.cern.ch/hep-benchmarks:
—hep-workloads (the common infrastructure and individual workloads)
—hep-score (single-number benchmark aggregator from several WLS)
—hep-benchmark-suite (automate execution, collect results in a database)

» QOutline: in this talk | will essentially describe the internals of hep-workloads
—The other two packages will be described in subsequent talks

EE/RW A. Valassi — Infrastructure for container builds Benchmarking Pre-GDB, CERN — 8 Oct 2019 2

~7 -

https://gitlab.cern.ch/hep-benchmarks

Recap: an alternative to HEP-SPECOG6,
benchmarking CPUs using HEP workloads

« For comparison, how did we converge on HEP-SPECO06 in the past?
—We analysed several subsets of the SPEC benchmark suite
—We chose one with high correlation and similar patterns as HEP WLs

« By construction, using HEP workloads directly is guaranteed to give
— A score with high correlation to the throughput of HEP workloads
—A CPU usage pattern that is similar to that of HEP workloads
—For event generation, detector simulation, digitization, reconstruction....

ATLAS ATLAS
= gen = sim
CMS CMS CMS
= gen-sim | = digi = reco

. 4

LHCb ref. WL(s) |

HEP Benchmarks

What enables doing this now is the
availability of container technology!

&= docker

ﬁw A. Valassi — Infrastructure for container builds Benchmarking Pre-GDB, CERN — 8 Oct 2019

<7/

Why many independent containers
In hep-workloads ?

1. Technical: encapsulation
—Each container includes all that is needed to run one workload, and only that

2. More fundamental: preserve the many degrees of freedom in the problem
—“A computer system’s performance cannot be characterized by a single number
or a single benchmark. [...] Many users (decision makers), however, are looking
for a single-number performance characterization. [...] There are no simple
answers. Both the press and the customer, however, must be informed about
the danger and the folly of relying on either a single performance number or a

single benchmark.”
Kaivalya M. Dixit, Overview of the SPEC Benchmarks,

in J. Gray (Ed.), The Benchmark Handbook for Database and Transaction Systems, 1993.

—Each HEP workload stresses different components of a computer system
* Some are |/O intensive, others not; some are vectorized, others not...
 Qur infrastructure provides a single benchmark number (hep-score), but keeps the
possibility to separately measure and record different WL benchmarks independently

ﬁw A. Valassi — Infrastructure for container builds Benchmarking Pre-GDB, CERN — 8 Oct 2019 4

~7 -

https://jimgray.azurewebsites.net/benchmarkhandbook/toc.htm

The hep-workloads containers

» Encapsulation: for each HEP workload, build a standalone benchmark container
— Portable and self-contained (no need for network connectivity)
— As small as possible (include all dependencies needed to run the workload, and only those)
— Doing always the same thing (results should be as reproducible as possible)

« Components of each HEP workload container
— Software repository (O/S and /cvmfs) [Standalone HEP Container WL;)
— Input data (event and conditions data)

— An orchestrator script (benchmark driver)
* Sets the environment

—)
: L (-
* Runs (many copies of) the application HEP Workload | | Extract Scores mﬁ
— Each copy may be multi-process or multi-threaded ¢ € i3
D |

C("«f Orchestrator

: R
+ Parses the output to generate scores (json) p l

h

_’E
Results
local J

chmfs - J

EQW A. Valassi — Infrastructure for container builds Benchmarking Pre-GDB, CERN -8 Oct 2019 5

<7/

The hep-workloads Cl and registry

« Individual HEP workload container images are built and distributed via gitlab
— The gitlab CI (continuous integration) builds and tests new images on commit
— If the build is successful, the CI pushes these (versioned) images to the gitlab registry

« The images are built as Docker containers

— But they can be executed both via Docker and Singularity

$ docker run -v /my host path:/results $IMAGE
$ singularity run -B /my host path:/results docker://$IMAGE

— A json summary and detailed logs are then found in /my_host_path on the host system

EE/RW A. Valassi — Infrastructure for container builds Benchmarking Pre-GDB, CERN —8 Oct 2019 6

N

Build procedure in the hep-workloads CI

* Main idea: experiment software is on /cvmfs, discover what is needed in a dry run
» Enabling technology: cvmfs tracing mechanism

A GitLab 1) &docker

Interim HEP image

local
curnls

Export cvmfs to local

ovnts -
. g
LA

Bind mount cvmfs Build standalone image Validate =
Run interim image
. > Jocker Publish

Collect cvmfs traces

*docker

« Starting from a gitlab repo containing only the Cl and WL orchestrator scripts:
1. Build an interim image, where /cvmfs is the standard network-connected service
2. Run the WL from that image, generating cvmfs traces listing which files were accessed
3. Build the final standalone image, where /cvmfs is a local folder, copying all relevant files
4. Test the WL from that image (both in Docker and Singularity), push it to the gitlab registry

EE/RW A. Valassi — Infrastructure for container builds Benchmarking Pre-GDB, CERN — 8 Oct 2019 7

~7 -

The hep-workloads builder image

* Individual WL images (interim and final) are built within a builder image

— This is common for all workloads and changes very infrequently
 Consistently check error, save logs and cvmfs traces for all workloads

— It contains docker, singularity and all other build and tests packages
— It is itself built by the CI, using standard (shared) runners at CERN

w3 1 & cocker

WL image build process
within the builder image

« Technicality: actually the builder image starts another builder image
— And within that internal builder image it builds individual workloads

— This additional “inception” is needed to manage docker volumes and privileges...

ﬁw A. Valassi — Infrastructure for container builds Benchmarking Pre-GDB, CERN — 8 Oct 2019

~7 -

8

The hep-workloads gitlab Cl workers cluster

We chose to set up our own (non-shared) CI workers
— Docker privileged mode, keep large logs, define custom host volumes...
— Individual WLs are built within the builder image running on these nodes

In time we moved from two standalone nodes to a Puppet cluster (4 nodes)
— More consistent setup, easier maintenance
— The standalone nodes were often getting full disks, or docker network issues

Each node is a VM with four logical processors (nproc” equals 4)

— Each node can only build one workload at a time
» Because the build of MP and MT workloads may need all four virtual processors

—We now do not always run many WL copies at build time to saturate the node

Storage management involves caching and cleanup
— Docker and singularity caches make the build process less storage hungry
— Regular cleanups after each build seem ok to keep space under control so far

EM A. Valassi — Infrastructure for container builds Benchmarking Pre-GDB, CERN — 8 Oct 2019 9

N

Docker layers in hep-workloads images

» Docker container images are always made up of layers
— Translating Docker images to Singularity also keeps this layer structure unchanged
— From the bottom up, these layers can be cached until the first difference is found

» The hep-workloads CI builds these layers to make them as cacheable as possible
— The bottom layers contain what is expected to change least often
— The top layers may change more frequently (across different workloads or versions)

— Advantage in the CI: faster builds/tests, save storage space (both Docker and Singularity)
» Advantage for users: faster tests, save storage space (if Docker and Singularity caches are set up)

4 Changes more often:
Common and WL scripts: /bmk caching less likely

Experiment WL software: /cvmfs

Experiment WL data files: /data

Changes less often:
caching more likely

EE/RW A. Valassi — Infrastructure for container builds Benchmarking Pre-GDB, CERN — 8 Oct 2019

~7 -

(" Standalone HEP Container WL1 W

The hep-workloads output report |T £

¥ Run

local

JSON document with the essential information o
— Configuration parameters —
* #copies, #threads, #events, status "W};ﬁ?;ie;jji U ass
— Benchmark score: total node throughput D ctarers |
« Events per wall second (sum over all copies) | o oo,
— Or events per CPU second in some cases e o oot
« Details for each application copy Jva s 20223,
— Statistics: mean, median, max, min... b .
throughput_score”: {
— Additional metrics for performance studies: Y ks,
« Memory and CPU utilization e ogae
— Workload metadata g
« Description, version, checksum ::'51’.09::: ok,
app™

"bmkdata_checksum™: "e57b3ad19144b7e9574b97056fb35d11",
"cvmfs_checksum": "b2ab@e3bd4bal333ebfc7dc49a024536",
"bmk_checksum": "fc73ae9f18c4ef90791f@97cd31b45dc",

"version": "v1.@",

"description": "CMS GEN-SIM of ttbar events, based on CMSSW_10_2_9"

The JSON produced by each individual WL *ihreads_per_copy": 4,

are then embedded in the overall JSON "events_per. thread": 10
produced by the hep-score aggregator .

ﬁw A. Valassi — Infrastructure for container builds Benchmarking Pre-GDB, CERN — 8 Oct 2019 11
N

Many hep-workloads flavors,
one common policy and one common driver

« General idea: enforce some commonality between different WLs
— Common naming convention on scripts, images, directories...
— Derive each WL orchestrator from a common bmk driver [standalone HEP Container WL;

T (< Orchestrator
« Consistent approach within the common bmk driver e O
— Command line argument interpretation (A =

— Spawn several WL copies and check status code N —
— Parse results and produce consistent json summaries
* Work in progress in finalizing the json schema

— Validate json summaries (e.g. linting)

EQW A. Valassi — Infrastructure for container builds Benchmarking Pre-GDB, CERN - 8 Oct 2019 12

<7/

Within hep-workloads containers:
non-root user, read-only /cvmfs

» Within each container, the entry-point driver script is executed as root
—For simplicity (access to /var, /tmp...), but this could be changed

 This led to a peculiar issue: the local /cvmfs could be overwritten

—The ATLAS sim workload overwrote conditions on /cvmfs and failed
*Not clear why the ATLAS software does that... but a fix was needed

« Workaround: make /cvmfs read-only when executing the workloads
—Create a new user ‘bmkuser’ in the Dockerfile
—Run all WLs as bmkuser via ‘su bmkuser’ in the common bmk driver

EQW A. Valassi — Infrastructure for container builds Benchmarking Pre-GDB, CERN — 8 Oct 2019 13

N

The hep-workloads containers:
available images and work in progress

« GEN and SIM workloads are available for all four LHC experiments
* DIGI and RECO workloads are available for CMS, work in progress for ATLAS

» Download the container images from the gitlab registry:

— gitlab-registry.cern.ch/hep-benchmarks/hep-workloads/alice-gen-sim-bmk:latest
— gitlab-registry.cern.ch/hep-benchmarks/hep-workloads/atlas-gen-bmk:latest

— gitlab-registry.cern.ch/hep-benchmarks/hep-workloads/atlas-sim-bmk:latest

— gitlab-registry.cern.ch/hep-benchmarks/hep-workloads/cms-gen-sim-bmk:latest
— gitlab-registry.cern.ch/hep-benchmarks/hep-workloads/cms-digi-bmk:latest

— gitlab-registry.cern.ch/hep-benchmarks/hep-workloads/cms-reco-bmk:latest

— gitlab-registry.cern.ch/hep-benchmarks/hep-workloads/Ihcb-gen-sim-bmk:latest

EQW A. Valassi — Infrastructure for container builds Benchmarking Pre-GDB, CERN — 8 Oct 2019 14

N

https://gitlab.cern.ch/hep-benchmarks/hep-workloads/container_registry

Outlook: hep-workloads containers
on heterogeneous resources (HPCs, GPUs...)

All of the work on hep-workloads described so far refers to x86 architectures

WLCG computing is expected to go well beyond x86 in the medium term future
— Non-x86 HPC supercomputers (ARM, Power9, GPUs...) will probably play a large role
— The container build approach | described applies also in these cases with a few changes

By and large, the software of the experiments is not yet production-ready for this
— Porting and validating it (and having the people to do that) is one of the first priorities
— But our new benchmarks must be ready in time to do the accounting for these resources!

Specifically: work is in progress on a HEP workload container involving GPUs
— CMS event reconstruction, with optional GPU offload of pixel tracking (see Patatrack talk)

CERN

\W A. Valassi — Infrastructure for container builds Benchmarking Pre-GDB, CERN — 8 Oct 2019 15

~7 -

Conclusions

After 10 years, HEP-SPECO06 no longer describes well enough HEP workloads

Our solution: build a new benchmark directly from HEP workload throughputs
— Enabling technologies: Docker containers and cvmfs tracing mechanism

Implementation of image builds is based on gitlab CI runners

Status: individual containers exist for GEN-SIM workloads of all four experiments
— And for the DIGI and RECO of CMS (and soon for ATLAS too)

Outlook: can extend the idea and implementation to HPCs and non-x86 resources
— A container for a workload with optional GPU offload (CMS Patatrack) is being prepared

EQW A. Valassi — Infrastructure for container builds Benchmarking Pre-GDB, CERN — 8 Oct 2019 16

N

