HEP Score and HEP Benchmark Suite "How to use HEP Workloads as benchmarks"

D. Giordano (CERN IT-CM)

on behalf of the HEPiX CPU Benchmarking WG hepix.org

pre-GDB - Benchmarking 8 Oct 2019

A reminder about HS06

- □ Subset of SPEC CPU[®] 2006 benchmark
 - SPEC's industry-standardized, CPU-intensive benchmark suite, stressing a system's processor, memory subsystem and compiler
- □ HS06 is suite of 7 C++ benchmarks
 - In 2009, proven high correlation with experiment workloads

Bmk	Int vs Float	Description		
444.namd	CF	92224 atom simulation of apolipoprotein A-I		
447.deallI	CF	Numerical Solution of Partial Differential Equations using the Adaptive Finite Element Method		
450.soplex	CF	Solves a linear program using the Simplex algorithm		
453.povray	CF	A ray-tracer. Ray-tracing is a rendering technique that calculates an image of a scene by simulating the way rays of light travel in the real world		
471.omnetpp	CINT	Discrete event simulation of a large Ethernet network.		
473.astar	CINT	Derived from a portable 2D path-finding library that is used in game's AI		
483.xalancbmk	CINT	XSLT processor for transforming XML documents into HTML, text, or other XML document types		

The overall HS06 score is the geometric mean of the 7 individual benchmark scores

HS06 score computation

- □ For each available core the sequence of benchmarks runs 3 times
 - Each core sequence is independent (potential time misalignment)
 - Multiple-Speed approach
- For each core and benchmark, the median value of the 3 measurements is taken, and a ratio respect to a reference value is computed

- Compute the **geometric mean** of the ratio values (per core)
- □ HS06 score = sum of the geometric means across cores

Why the geometric mean?

❑ Ratio of scores ⇔ average relative performance

- Geometric mean of ratios == ratio of geometric means
- Example:
 - T_i^r : is the speed of running WL (i) in reference compute node (r)
 - T_i^c : is the speed of running WL (i) in a compute node (C)
 - T_i^G : is the speed of running WL (i) in a compute node (G)
 - λ_i is the relative weight of a given WL
 - If all are equal it can be 1 for all
- N.B.: that would be valid also with (G) being a node with GPU to be compared with a node with CPU only

HEP score concepts

- □ HEP-score triggers HEP Workloads' runs in sequence
 - A container per WL
 - 3 times per WL, in sequence, and the median WL score is retained

- Each container runs the Experiment executable with a configurable number of threads (MT) or processes (MP)
- □ The available cores are saturated spawning a *computed* number of parallel copies
- The score of each WL is the cumulative event throughput of the running copies
 - When possible the initialization and finalization phases are excluded from the computation
 - Otherwise a long enough sequence of events is used
- A WL *speed factor* is computed as ratio of the WL score on a given machine w.r.t. the WL score obtained on a fixed reference machine
- □ HEPscore is the geometric mean of the WLs' speed factor

Collecting HEPscores with HEP Benchmark Suite Full node profile

Resource partitioning done 'a priori'

- By default profile all the available resources of the (virtual) machine

BM server

CPU Socket O

Data collection at CERN

- Single sockets of each CPU model are profiled
- VMs with fully reserved CPU sockets (1/2 node)

8/10/2019

VMs with reserved CPU socket

Very preliminary comparison with HS06

- Compare performance of a single CPU socket
- Take as reference
 - Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz
- □ HEP-score consists of
 - CMS: gen-sim, digi, reco
 - Atlas: gen, sim
 - LHCb: gen-sim
 - Still does NOT include all WLs!!
- □ Hint of discrepancy for Skylake Gold?
 - To be further investigated

cpu model 🚽	label 🌻	Count 🌻	distinct VMs ≑
Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz	VM-32-CC7	18	1
Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz	VM-28-CC7	14	1
Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz	VM-12-CC7	26	2
Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz	VM-16-CC7	20	1
Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz	VM-20-CC7	62	3
Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz	VM-16-CC7	16	2

7

