A general procedure for detector response correction of higher order cumulants

<u>Toshihiro Nonaka¹</u>, Masakiyo Kitazawa², ShinIchi Esumi³ <u>Central China Normal University¹</u>, Osaka University², University of Tsukuba³ NA61-theory virtual meeting July 19, 2018

Based on arXiv:1805.00279, submitted to Nucl.Instrum.Meth. A

Outline

- Introduction
- Efficiency correction with binomial assumption
- More general procedures
- Summary

Introduction

Higher order fluctuation

- Moments and cumulants are mathematical measures of "shape" of a distribution which probe the fluctuation of observables.
 - Moments: mean (M), standard deviation (σ), skewness (S) and kurtosis (κ). \checkmark \checkmark
 - S and k are non-gaussian fluctuations.

Cumulant *⇒* **Moment** \checkmark

 $<\delta N>=N-<N>$ $C_1 = M = \langle N \rangle$ $C_2 = \sigma^2 = \langle (\delta N)^2 \rangle$ $C_3 = S\sigma^3 = \langle \delta N \rangle^3 >$ $C_4 = \kappa \sigma^4 = \langle (\delta N)^4 \rangle - 3 \langle (\delta N)^2 \rangle^2$

Cumulant : additivity \checkmark

 $C_n(X+Y) = C_n(X) + C_n(Y)$

proportional to volume

Cumulants of conserved quantities

$$C_2 = \langle \delta N \rangle^2 >_c \approx \xi^2 \quad C_5 = \langle \delta N \rangle^5 >_c \approx \xi^6$$

$$C_3 = \langle \delta N \rangle^3 >_c \approx \xi^{4.5} \quad C_6 = \langle \delta N \rangle^6 >_c \approx \xi^1$$

$$C_4 = \langle \delta N \rangle^4 >_c \approx \xi^7$$

$$\begin{split} S\sigma &= \frac{C_3}{C_2} = \frac{\chi_3}{\chi_2} \quad \kappa \sigma^2 = \frac{C_4}{C_2} = \frac{\chi_4}{\chi_2} \\ \chi_n^q &= \frac{1}{VT^3} \times C_n^q = \frac{\partial^n p / T^4}{\partial \mu_q^n}, \quad q = B, Q, S \end{split}$$

Volume dependence can be canceled by taking ratio.

Two difficulties

Two issues which have not been fully understood yet.

Initial volume fluctuation

- the value of cumulants.
- Several model dependent correction methods.

Non-binomial detector effects

- distorts the value of cumulants.
- binomial.
- Experimentally, however, it may not be binomial.

It is know that event-by-event participant (impact parameter) fluctuation affects

• Detectors miss some particles with finite probability called "efficiency", which

Conventional correction methods relies on the assumption that efficiencies are

Efficiency correction with binomial assumption

M. Kitazawa and M. Asakawa : PRC.86.(2012)024904

$$\begin{split} \langle N \rangle &= \xi_1^{-1} \langle n \rangle, \\ \langle N^2 \rangle_{\rm c} &= \xi_1^{-2} \langle n^2 \rangle_{\rm c} - \xi_2 \xi_1^{-3} \langle n \rangle, \\ \langle N^3 \rangle_{\rm c} &= \xi_1^{-3} \langle n^3 \rangle_{\rm c} - 3\xi_2 \xi_1^{-4} \langle n^2 \rangle_{\rm c} + (3\xi_2^2 \xi_1^{-5} - \xi_3 \xi_1^{-4}) \langle n \rangle, \\ \langle N^4 \rangle_{\rm c} &= \xi_1^{-4} \langle n^4 \rangle_{\rm c} - 6\xi_2 \xi_1^{-5} \langle n^3 \rangle_{\rm c} + (15\xi_2^2 \xi_1^{-6} - 4\xi_3 \xi_1^{-5}) \langle n^2 \rangle, \\ &- (15\xi_2^3 \xi_1^{-7} - 10\xi_2 \xi_3 \xi_1^{-6} + \xi_4 \xi_1^{-5}) \langle n \rangle \end{split}$$

A. Bzdak and V. Koch : PRC.(2012)86.044904

$$\begin{split} pK_1 &= c_1, \\ p^2 K_2 &= c_2 - n(1-p), \\ p^3 K_3 &= c_3 - c_1(1-p^2) - 3(1-p)(f_{20} - f_{02} - nc_1), \\ p^4 K_4 &= c_4 - np^2(1-p) - 3n^2(1-p)^2 - 6p(1-p)(f_{20} + f_{02} + 12c_1(1-p)(f_{20} - f_{02}) - (1-p^2)(c_2 - 3c_1^2) - 6n(1-6(1-p)(f_{03} - f_{12} + f_{02} + f_{20} - f_{21} + f_{30}). \end{split}$$

Efficiency correction with binomial assumption

Efficiency correction was extended to multi- \checkmark variable case (many efficiency bins).

A. Bzdak and V. Koch : PRC.91.(2015)027901

Efficient formulas

✓ Huge calculation cost for higher order with many efficiency bins.

- m : order of cumulant
- $\sim M^m$ for large M M : # of efficiency bins

✓ More efficient formulas have been developed.

- M. Kitazawa : PRC.93.(2016)044911
- T. Nonaka, M. Kitazawa, S. Esumi, PRC.94.(2017)034909
- Used in STAR C₆ and ALICE C₄

T. Nonaka, QM2017, poster

N. K. Behera (ALICE), QM2018 \rightarrow ~20 efficiency bins

Efficient formulas

Huge calculation cost for higher order with many efficiency bins.

T. Nonaka, QM2017, poster

N. K. Behera (ALICE), QM2018 $\rightarrow \sim 20$ efficiency bins

Where does non-binomial come from?

which can be understood only by MC.

- Track splitting/merging
- Time dependence of efficiency
- Particle misidentification

Track splitting

✓ There might be some reasons to make the response matrix non-binomial,

Toshihiro Nonaka, NA61-theory virtual meeting

11

If experiment is non-binomial...

A.Bzdak, R. Holzmann, V. Koch : PRC.94.(2016)064907

FIG. 2. The hypergeometric distribution for different values of α compared with the binomial distribution (black points). Here N = 40and $\epsilon = 2/3$.

Hypergeometric

TABLE I. The obtained values of K_n/K_2 for the hypergeometric distribution, using $F_i = f_i/\epsilon^i$ with $\epsilon = 2/3$, for different values of α as presented in Fig. 2.

FIG. 3. The beta-binomial distribution for different values of α compared with the binomial distribution (black points). Here N = 40and $\epsilon = 0.7$.

Beta-binomial

TABLE II. The obtained values of K_n/K_2 for the beta-binomial distribution, using $F_i = f_i / \epsilon^i$ with $\epsilon = 0.7$, for different values of α as presented in Fig. 3.

Hypergeometric	$\alpha = 0.6$	$\alpha = 1.0$	$\alpha = 2.0$	$\alpha = 5.0$	beta binomial	$\alpha = 30$	$\alpha = 60$	$\alpha = 150$	$\alpha = 1000$
$\overline{K_3/K_2}$	1.16	1.12	1.07	1.03	K_{3}/K_{2}	1.28	1.24	1.13	1.02
K_{4}/K_{2}	0.66	0.88	0.98	1.00	K_4/K_2	0.82	1.45	1.35	1.07
K_5/K_2	2.19	1.68	1.23	1.05	K_5/K_2	-1.11	1.15	1.63	1.16
K_{6}/K_{2}	- 3.99	-1.38	0.31	0.89	K_6/K_2	5.71	-0.44	1.80	1.32

True cumulants are unity, but all results deviate.

- ✓ Unfolding is necessary. Reconstruct the distribution itself numerically.
 - Estimation of systematic uncertainties is difficult.
 - Huge calculation cost due to iterations.
 - Distributions are not so necessary.

More general method to correct for detector effects by cumulants directly?

Notations

$$\tilde{P}(n) = \sum_{N} \frac{\mathcal{R}(n; N) P(N)}{\text{Response matrix}}$$
(1)
$$\langle\!\langle n^{m} \rangle\!\rangle = \sum_{n} n^{m} \tilde{P}(n), \quad \text{Measured moments}$$
$$\langle\!\langle N^{m} \rangle\!\rangle = \sum_{N} N^{m} P(N). \quad \text{True moments}$$

\checkmark If Eq. (6) closes at finite order, Eq. (9) can be exactly solved. ✓ If not, some truncations are necessary.

$$\langle\!\!\langle n^m \rangle\!\!\rangle = \underline{r_{m0}} + \sum_{j=1}^{\infty} \underline{r_{mj}} \langle N^j \rangle. \tag{7}$$
Property of the detector

$$\langle\!\langle n^m \rangle\!\rangle = \sum_N P(N) \sum_n n^m \mathcal{R}(n; N)$$
$$= \sum_N P(N) R_m(N), \qquad (4)$$

$$R_m(N) = \sum_n n^m \mathcal{R}(n; N). \quad \begin{array}{l} \text{Moments of response} \\ \text{matrix with fixed N} \end{array}$$
$$R_m(N) = \sum_{j=0}^{\infty} r_{mj} N^j. \quad (6)$$

$$\begin{bmatrix} \langle N \rangle \\ \langle N^2 \rangle \\ \vdots \end{bmatrix} = \mathbf{R}^{-1} \begin{bmatrix} \langle n \rangle \\ \langle n^2 \rangle \\ \vdots \end{bmatrix} - \mathbf{R}^{-1} \begin{bmatrix} r_{10} \\ r_{20} \\ \vdots \end{bmatrix}.$$
(9)

General procedures Exactly solvable case Truncation

Non-binomial distribution

- $X = N_w$, $Y = N_{tot} = N_w + N_b$

-
$$p = N_w/N_{tot} = X/Y$$

$$\mathcal{R}_{\mathrm{HG}}(n;N) = H(n;N,X,Y), \qquad (18)$$

$$\mathcal{R}_{\beta}(n;N) = \beta(n;N,X,Y-X), \qquad (19)$$

<u>Close to binomial with $Y \rightarrow \infty$ </u>

- Use these two response distributions \checkmark to check our new method.
- Also, these examples can be solved \checkmark analytically, which is discussed in **Appendix D.**

Non-binomial RM

- \checkmark with efficiency p=0.7.
- \checkmark **binomial response function.**
- **10 times larger statistics are generated for MC.** \checkmark

FIG. 1. Correlation between n and N on the sample events, i.e. the magnitude of $\mathcal{R}(n; N) P(N)$, for the response matrices $\mathcal{R}_{HG}(n; N)$ (hypergeometric) and $\mathcal{R}_{\beta}(n; N)$ (beta-binomial) with p = X/Y = 0.7 and Y = 140.

Assume non-binomial response matrix, hypergeometric and beta-binomial distribution,

Generate P(N) with Poisson distribution, then sample P(n) by hypergeometric and beta-

Extract detector properties

Calculate mth order moments of n at each N. \checkmark

- Cumulants are shown here for better presentation.
- Fit by mth polynomial, to extract r^{mj} \checkmark

$$R_m(N) = \sum_{j=0}^m r_{mj} N^j.$$
 (10)

Solve the equations. \checkmark

$$\langle\!\langle n^m \rangle\!\rangle = r_{m0} + \sum_{j=1}^{\infty} r_{mj} \langle N^j \rangle.$$
(7)

Results

- Check the correction as a function of different \checkmark non-binomial parameter Y.
- **Conventional correction assuming binomial** \checkmark efficiencies does not work.
 - Our new method works well.
- Hypergeometric and beta-binomial examples \checkmark can be also solved analytically.

Multiplicity dependent efficiency

✓ Efficiency decreases with increasing multiplicity, which artificially decreases the value of cumulants.

 K_n/K_2

needs to be taken into account.

Residual dependence of efficiency inside one multiplicity bin (for centrality)

$C_1(N) \propto N^2$, $C_2(N) \propto N^4$, $C_3(N) \propto N^6$ \checkmark

- Cannot be exactly solved.
- Truncation is necessary.

Fit by 4th polynomial, to extract r^{mj} \checkmark

$$R_m(N) = \sum_{j=0}^{m-1} r_{mj} N^j.$$
(10)

R will be L x L matrix

$$\begin{bmatrix} \langle n \rangle \\ \langle n^2 \rangle \\ \vdots \\ \langle n^L \rangle \end{bmatrix} = \begin{bmatrix} r_{10} \\ r_{20} \\ \vdots \\ r_{L0} \end{bmatrix} + \mathbf{R} \begin{bmatrix} \langle N \rangle \\ \langle N^2 \rangle \\ \vdots \\ \langle N^L \rangle \end{bmatrix}, \quad (17)$$

0.002

- Check the correction as a function of efficiency slope ε .
- **Conventional method dose not work.**
- **Truncation at 4th order works well.**
- With high statistics in MC, the trunction \checkmark at 4th order would lose it's validity
- ✓ Validity of truncation can be checked by changing the truncation order like Lth, L+1th, L+2th order.

Additional comments

- \checkmark In the case of net-particle distribution, 2-D fitting is necessary.
- since we don't know true P(N).
 - $P_{MC}(N)$ with respect to the Poisson distribution for P(N) with C₁=40.
- \checkmark We should try several models to determine R(n;N), which should be included as systematic uncertainties
 - HIJING+GEANT?? Or embedding simulation??

\checkmark We assumed P_{MC}(N) = P(N), which is not the case in the real experiment,

- Correct results were obtained by using a Gauss distribution $C_1=40$ and $C_2=\sqrt{40}$ for

\checkmark It would be better if data driven method will be developed in the future.

- General procedures to correct non-binomial detector effects were presented.
- Systematic studies using different models would be needed.

• Truncation will be necessary if efficiency depends on the multiplicity.

Thank you!

Back up

Cumulants of binomial distribution

Cumulants of binomial distribution is proportional to N.

M. Asakawa and M. Kitazawa, Prog. Part. Nucl. Phys. 90, 299 (2016), arXiv:1512.05038

$$B_{p,N}(m) = {}_{N}C_{m}p^{m}(1-p)^{N-m}, \quad {}_{N}C_{m} = \frac{N!}{m!(N-m)!},$$

$$\langle m^n \rangle_{\rm c} = \xi_n N,$$

$$\xi_1 = p, \quad \xi_2 = p(1-p), \quad \xi_3 = p(1-p)(1-2p), \quad \xi_4 = p(1-p)(1-6p+6p^2).$$

Cumulants of non-binomial distributions

$$\begin{split} \langle n \rangle_{\rm c}^{\rm HG} &= Np, \\ \langle n^2 \rangle_{\rm c}^{\rm HG} &= \frac{N(N-Y)(-1+p)p}{-1+Y}, \\ \langle n^3 \rangle_{\rm c}^{\rm HG} &= \frac{N(2N^2-3NY+Y^2)(-1+p)p(-1+2p)p(-1+2p)p(-1+2p)p(-1+Y)}{(-2+Y)(-1+Y)} \\ \langle n^4 \rangle_{\rm c}^{\rm HG} &= [N(N-Y)(-1+p)p(6N^2(-1-6(-1+p)p)(-1+2p)p(-1+$$

$$\begin{split} \langle n \rangle_{\rm c}^{\beta} &= Np, \\ \langle n \rangle_{\rm c}^{\beta} &= -\frac{N(N+a+b)(-1+p)p}{1+a+b}, \\ \langle n \rangle_{\rm c}^{\beta} &= \frac{N(N+a+b)(2N+a+b)(-1+p)p(-1+b)(-1+p)p(-1+b)}{(1+a+b)(2+a+b)}, \\ \langle n \rangle_{\rm c}^{\beta} &= -((N(N+a+b)(-1+p)p(6N^2(1+6(-1+b)(1+6(-1+p)p+(a+b)(1+6(-1+p)p))))/((1+a+b)(1+6(-1+p)p)))) \end{split}$$

Non-binomial efficiency

QM2018, T. Nonaka (STAR)

