Linearly polarised photons and determining the polarisation degree

Simon Gardner

NSTAR2019
Bonn
11th June 2019
Outline

1. Motivation
2. Generation of Coherent Bremsstrahlung
3. Coherent Bremsstrahlung Fit
4. Nuclear Physics Reaction
5. Pair and Triplet Production
6. Triplet Polarimeter - GlueX
7. Prototype Pair Polarimeter
8. Coherent Bremsstrahlung of the Future
Motivation - N^* programme

N^* programme reliant on linear polarisation.

<table>
<thead>
<tr>
<th>Beam</th>
<th>Target</th>
<th>Recoil</th>
<th>Target + Recoil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x y z</td>
<td>$x' y' z'$</td>
<td>$x' x' z' z'$</td>
</tr>
<tr>
<td>Unpol</td>
<td>σ_0</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>Linear</td>
<td>Σ</td>
<td>$H P G$</td>
<td>$O_{x'} T O_{z'}$</td>
</tr>
<tr>
<td>Circular</td>
<td>$F E$</td>
<td>$C_{x'} C_{z'}$</td>
<td>$T_{x'} L_{x'} T_{z'} L_{z'}$</td>
</tr>
<tr>
<td>Experiment</td>
<td>Reaction</td>
<td>Obs</td>
<td>Energy</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>-----</td>
<td>--------------</td>
</tr>
<tr>
<td>Yerevan</td>
<td>$p\gamma \rightarrow p\pi^0$</td>
<td>Σ</td>
<td>$0.5 \rightarrow 1.1\text{GeV}$</td>
</tr>
<tr>
<td>Max III</td>
<td>$^{12}C, (p)^{11}B$</td>
<td>Σ</td>
<td>$40 \rightarrow 50\text{MeV}$</td>
</tr>
<tr>
<td>Clas</td>
<td>$p\gamma \rightarrow p\pi^0$</td>
<td>Σ</td>
<td>$1.1 \rightarrow 1.8\text{GeV}$</td>
</tr>
<tr>
<td>CBELSA</td>
<td>$p\gamma \rightarrow p\pi^0$</td>
<td>G</td>
<td>$0.6 \rightarrow 1.3\text{GeV}$</td>
</tr>
<tr>
<td>A2</td>
<td>$p\gamma \rightarrow p\pi^0$</td>
<td>Σ</td>
<td>$320 \rightarrow 650\text{MeV}$</td>
</tr>
<tr>
<td>GlueX</td>
<td>$p\gamma \rightarrow p\pi^0$</td>
<td>Σ</td>
<td>$8.1 \rightarrow 9.0\text{GeV}$</td>
</tr>
</tbody>
</table>
1 Motivation
2 Generation of Coherent Bremsstrahlung
3 Coherent Bremsstrahlung Fit
4 Nuclear Physics Reaction
5 Pair and Triplet Production
6 Triplet Polarimeter - GlueX
7 Prototype Pair Polarimeter
8 Coherent Bremsstrahlung of the Future
Generation of Coherent Bremsstrahlung

\[\gamma = E_0 - E_1 \]

Generated using diamond radiator.
Cover full range beam energy.
Understood but complex polarisation energy dependence.
Generation of Coherent Bremsstrahlung

\[E_\gamma = E_0 - E_1 \]

Generated using diamond radiator.
Cover full range beam energy.
Understood but complex polarisation energy dependence.

[022,044...] primary contributions.
Other vectors angled to not overlap with region.
http://nuclear.gla.ac.uk/ kl/GlueX/cbrems scans/scan.gif
Outline

1 Motivation
2 Generation of Coherent Bremsstrahlung
3 Coherent Bremsstrahlung Fit
4 Nuclear Physics Reaction
5 Pair and Triplet Production
6 Triplet Polarimeter - GlueX
7 Prototype Pair Polarimeter
8 Coherent Bremsstrahlung of the Future
Coherent Bremsstrahlung Fit

Currently widely used in most labs.

Pros:
Information provided by the photon tagger.
Polarisation over whole tagged photon energy range.

Cons:
Very sensitive to orientation of diamond lattice.
Indirect measurement.
Requires runs with amorphous radiator.
Parameters can vary with the same χ^2; giving an uncertainty on the polarisation of about 5%.
Coherent Bremsstrahlung Fit

Currently widely used in most labs.

Analytic Bremsstrahlung Calculation (anb)

![Graph showing photon energy (MeV) vs. enhancement and polarization.](image)

Input Parameters
- beam energy (MeV)
- energy spread (MeV)
- goni. h (mrad)
- goni. v (mrad)
- goni. a (deg)
- x beam Spot Size (mm)
- y beam Spot Size (mm)
- x beam divergence (mrad)
- y beam divergence (mrad)
- radiator thickness [mm]
- collimator distance [mm]
- collimator length [mm]
- collimator radius [mm]
- incoherence type
- no of lattice vecs
- Z of Crystal (Brili)
- Z of Amorphous (Ni:30)

[Load Data] [Clear] [RUN]
1 Motivation
2 Generation of Coherent Bremsstrahlung
3 Coherent Bremsstrahlung Fit
4 Nuclear Physics Reaction
5 Pair and Triplet Production
6 Triplet Polarimeter - GlueX
7 Prototype Pair Polarimeter
8 Coherent Bremsstrahlung of the Future
Examples:
Coherent π^0 production off spin 0 nucleus (4He, 12C, 208Pb)
ρ meson production.
π^0 production.

Pros:
Can use standard experimental detectors.
Direct continuous post collimation measurement.

Cons:
Precise measurement previously made.
Inherit systematic uncertainty.
Essential to confidently separate background channels.
Only valid for specific targets or secondary target needs to be added.
Outline

1 Motivation
2 Generation of Coherent Bremsstrahlung
3 Coherent Bremsstrahlung Fit
4 Nuclear Physics Reaction
5 Pair and Triplet Production
6 Triplet Polarimeter - GlueX
7 Prototype Pair Polarimeter
8 Coherent Bremsstrahlung of the Future
Pros:
Electromagnetic processes described precisely by theory.
Direct continuous post collimation measurement.
No significant background reactions.

Cons:
Low count rates.
Requires designated additional detector.
Lower energy coverage

Pair Production

Photon Conversion in nuclear field.

\[\gamma + N \rightarrow e^+ + e^- + N \]

Higher reaction cross section.
Lower analysing power.

Triplet Production

Photon Conversion in electron field.

\[\gamma + e_{atomic} \rightarrow e^+ + e^- + e_{recoil} \]

Lower reaction cross section.
Higher analysing power.
Pair and Triplet Production

Pair Production
Photon Conversion in nuclear field.
\[\gamma + N \rightarrow e^+ + e^- + N \]
Higher reaction cross section. Lower analysing power.

Triplet Production
Photon Conversion in electron field.
\[\gamma + e^-_{atomic} \rightarrow e^+ + e^- + e^-_{recoil} \]
Lower reaction cross section. Higher analysing power.

[M. Dugger et. al. NIM 867 (2017)]
1 Motivation
2 Generation of Coherent Bremsstrahlung
3 Coherent Bremsstrahlung Fit
4 Nuclear Physics Reaction
5 Pair and Triplet Production
6 Triplet Polarimeter - GlueX
7 Prototype Pair Polarimeter
8 Coherent Bremsstrahlung of the Future
Systematic uncertainty estimated at 1.5%
Accumulate over beamtime to get enough statistics for binning polarisation by photon energy.
1 Motivation
2 Generation of Coherent Bremsstrahlung
3 Coherent Bremsstrahlung Fit
4 Nuclear Physics Reaction
5 Pair and Triplet Production
6 Triplet Polarimeter - GlueX
7 Prototype Pair Polarimeter
8 Coherent Bremsstrahlung of the Future
\[\gamma + N \rightarrow e^+ + e^- + N \]

0.1 \(\rightarrow\) 1.5 GeV tagged photon beam.

Pairs converted in Tantalum foil.

Separated from beamspot by dipole field.

Two Timepix3 detectors.

Scintillation detectors form trigger.

Expected systematic error of \(<2\%.

20 minutes of running under Mainz conditions.
Prototype Pair Polarimeter
Location of the pair polarimeter for tests.
Polarisation Extraction

0→0.25→0.5→0.75→1 degree of polarisation
Linear regression of histogram bins contents.

Fit line to the change in histogram bin fraction with polarisation. Less than 0.5% error, would improve additional simulations.
1 Motivation
2 Generation of Coherent Bremsstrahlung
3 Coherent Bremsstrahlung Fit
4 Nuclear Physics Reaction
5 Pair and Triplet Production
6 Triplet Polarimeter - GlueX
7 Prototype Pair Polarimeter
8 Coherent Bremsstrahlung of the Future
Coherent Bremsstrahlung of the Future

Running at Bonn, Mainz and J-Lab for now
Speculative facilities:

- DAΦNE
- ILC (International Linear Collider) - 125 GeV real photons

Figure 3.1. Schematic layout of the ILC, indicating all the major subsystems (not to scale). From TDR Executive Summary (https://arxiv.org/pdf/1306.6327.pdf)
Current methods for determining the degree of polarisation are no longer good enough.

GlueX has proved the effectiveness of a polarimeter.

A pair polarimeter would increase allow measurements at Mainz rates.
END