$K^+\Lambda(1405)$ photoproduction at the BGO-OD experiment

Georg Scheluchin

for the BGO-OD-Collaboration

Physikalisches Institut Universität Bonn

NSTAR 2019

Bonn, 13. June 2019

Supported by the DFG (PN 50165297)

Motivation for $\Lambda(1405)$

- BGO-OD experiment
- A(1405) identification
 - forward spectrometer (f.spec)
 - full topology (full top.)
- Preliminary results
- Summary & outlook

Unconventional states in the strangeness sector?

U.Loering, B.C. Metsch and H.R. Petry Eur.Phys.J. A10, 447-486 (2001)

Unconventional states in the strangeness sector?

U.Loering, B.C. Metsch and H.R. Petry Eur.Phys.J. A10, 447-486 (2001)

A(1405) Lattice QCD

 $N\bar{K}$ appears as main component going to realistic pion/-quark masses also see: R. Molina and M. Döring, Phys. Rev. D 94, 056010 (2016)

$\Lambda(1405)$ line shape

Results at CLAS:

K.Moriya, R.A.Schumacher et al. Phys. Rev. C 88, 045201 (2013) see also K.Moriya, R.A.Schumacher et al. Phys. Rev. C 87, 035206 (2013)

- BGO-OD Experiment
 - \Rightarrow complementary setup
 - \Rightarrow access unexplored kin. regions

$\Lambda(1405)$ line shape

Results at CLAS:

K.Moriya, R.A.Schumacher et al. Phys. Rev. C 88, 045201 (2013) see also K.Moriya, R.A.Schumacher et al. Phys. Rev. C 87, 035206 (2013)

- BGO-OD Experiment
 - \Rightarrow complementary setup
 - \Rightarrow access unexplored kin. regions

Elektronen-Stretcher-Anlage ELSA in Bonn

Experimental requirements

photoproduction

 $\gamma p \rightarrow K^+ \Lambda(1405) \rightarrow K^+ \Sigma \pi$

Experimental requirements

BGO-OD

BGO-OD

BGO-OD

$K^+ \Lambda(1405) ightarrow K^+ \pi^0 \Sigma^0$

$$\mathcal{K}^+ \Lambda(1405) \rightarrow \mathcal{K}^+ \pi^0 \Sigma^0 \ (33 \ \%)$$

 $\mathbf{K}^+ \text{ in Forward Detector}$
 $\pi^0 \rightarrow 2\gamma \text{ in Central Detector}$

 \square Σ^0 missing

$$\rightarrow$$
 f. spec.

$K^+\Lambda(1405) \rightarrow K^+\pi^0 X$ (real data, K⁺ forward)

$K^+\Lambda(1405) \rightarrow K^+\pi^0 X$ (sim. $\Sigma(1385)$, K⁺ forward)

2D RooFit example

UNIVERSITÄT BONN

RooFit reliability

\Rightarrow Results very preliminary

Motivation for A(1405) BGO-OD A(1405) identification (f.spec) A(1405) identification (full top.) Results Summary & outlook

$K^+ \Lambda(1405) ightarrow K^+ \pi^0 \Sigma^0$ (33 %)

- K^+ in Forward Detector
- $\pi^0 \rightarrow 2\gamma$ in Central Detector

• Σ^0 missing

 \rightarrow f. spec.

Motivation for A(1405) BGO-OD A(1405) identification (f.spec) A(1405) identification (full top.) Results Summary & outlook

 \rightarrow |f. spec.|

$K^+ \Lambda(1405) ightarrow K^+ \pi^0 \Sigma^0$ (33 %)

- K⁺ in Forward Detector
- $\pi^0 \rightarrow 2\gamma$ in Central Detector

Σ⁰ missing

$\mathcal{K}^+ \Lambda(1405) \rightarrow \mathcal{K}^+ \pi^0 \Sigma^0 \rightarrow \mathcal{K}^+ \pi^0 \gamma \Lambda \rightarrow \mathcal{K}^+ \pi^0 \gamma \pi^- p (21\%)$

- $\pi^0 \gamma$ in BGO calorimeter ($\theta^{lab} = 25..155^\circ$)
- $K^+\pi^-p$ with direction only ($\theta^{lab} = 2..155^\circ$)
 - \rightarrow recalculated momentum
 - \rightarrow no particle identification

kinematic fit

$$\rightarrow$$
 full top.

Removing combinatorial background

Angle distribution of γ from the $\Sigma \rightarrow \gamma \Lambda$ decay

Real data $\gamma p \rightarrow K^+ \Lambda(1405) \rightarrow K^+ \Sigma^0 \pi^0 \rightarrow K^+ \gamma \Lambda^0 \pi^0$

Simulation studies of background: $\Sigma(1385)$

RooFit

 $K^+\Lambda(1405)$ events can be extracted with RooFit

Line shape extraction with RooFit

- **1** exclude events with $|\gamma \Lambda| \approx |\Sigma^0|$
- 2 fit background channels (excluding: $K^+\Sigma^0\pi^0, K^+\Lambda(1405/1520), K^{*+}\Sigma^0)$
- 3 subtract fitted background distribution from data

Line shape extraction, RooFit results, $\gamma \Lambda$ projection

Line shape extraction, RooFit results, $\pi^0\gamma\Lambda$ projection

background region: $|\gamma \Lambda| < 1167$ MeV or $|\gamma \Lambda| > 1212$ MeV

Line shape extraction, RooFit results, $\pi^0\gamma\Lambda$ projection

signal region: 1167 MeV $< |\gamma \Lambda| <$ 1212 MeV

Line shape extracted

Mass resolution $\sigma = 13.0 \pm 0.1 \text{MeV}$

Line shape at BGO-OD

Line shape compared to other experiments

Differential cross section $\gamma p \rightarrow K^+ \Lambda(1405) \rightarrow K^+ \Sigma^0 \pi^0$

Differential cross section $\gamma p \rightarrow K^+ \Lambda(1405) \rightarrow K^+ \Sigma^0 \pi^0$

Mandelstam variable $t = (\gamma - K^+)^2$ transfer momentum $\vec{q} = \vec{\gamma} - \vec{K^+}$

Differential cross section against t

Differential cross section against $|\vec{q}|$

Summary & outlook

- Motivation: unconventional states in s-sector
 - Λ(1405) molecule-like structure?

Summary & outlook

- Motivation: unconventional states in s-sector
 - A(1405) molecule-like structure?
- **Results for** $\Lambda(1405) \rightarrow \Sigma^0 \pi^0$
 - Line shape
 - good agreement
 - other decay modes
 - \rightarrow more data taking

Summary & outlook

- Motivation: unconventional states in s-sector
 - A(1405) molecule-like structure?
- **Results for** $\Lambda(1405) \rightarrow \Sigma^0 \pi^0$
 - Line shape
 - good agreement
 - other decay modes
 - \rightarrow more data taking
 - Differential cross section
 - extreme forward angles accessible
 - agreement with CLAS

Thank you for your attention!

Diff.Cross vs Calculated \sqrt{t} for E_{\gamma}=1500.000000..1767.000000 $\underline{\text{MeV}}$

new t correlation direct results

Doppel peak structure in line shape?

Comparing cross section to other decay modes

$K^+\pi^0\overline{\Sigma^0} ightarrow K^+ 3\gamma\pi^- p$ (real data)

 $\Sigma^0 \rightarrow \gamma \Lambda \rightarrow \gamma \pi^- \rho$ (64%). No particle identification of K⁺.

nopid

nopid

simulate background channels ($\Sigma(1385), \Sigma^0, \pi^+\pi^-\pi^0, ...$)

2D RooFit to background

- simulate background channels ($\Sigma(1385), \Sigma^0, \pi^+\pi^-\pi^0, ...$)
- data around Σ⁰ mass removed
- background contribution is modulated to describe data (2D)

2D RooFit to background

- simulate background channels ($\Sigma(1385), \Sigma^0, \pi^+\pi^-\pi^0, ...$)
- data around Σ⁰ mass removed
- background contribution is modulated to describe data (2D)
- found contributions subtracted from all data

$K^+\pi^0\Sigma^0$ background subtracted (E_{γ} =1.6..2.0 GeV)

Extraction of differential cross section possible

40/30

Line shape $\Lambda(1405)$

Beamtime	datataking / days	P_γ / %	e-Beamcurrent / pA
6/2015	11	≈25	1300
10/2015	16	≈25	1190
2/2017	3	\approx 75	1300-1700
5/2017	(15)	(75)	(1300)

$K^+\Lambda(1405) \rightarrow K^+\pi^0 X$ (sim. $\Lambda(1405)$, K⁺ forward)

Knowledge about line shape of $\Lambda(1405)$ and $\Sigma(1385)$ needed!

$K^+\pi^0\Sigma^0 \to K^+\pi^0\gamma + \Lambda(\text{missing})$ (real data)

 $\Sigma^0 \rightarrow \gamma \Lambda(100\%)$. After a kinematic fit to the missing Λ mass.

$\Lambda(1405)$ line shape

Prediction:

$$\Lambda(1405)
ightarrow \Sigma^0 \pi^0
onumber \ \Sigma^\pm \pi^\mp$$

J.C.Nacher et al. Phys.Lett. B455, 55-61 (1999) see also: D.Jido et al. Nucl.Phys.A. 725,181 (2003)

Free NK threshold at 1432 MeV

 $\begin{array}{rl} \rightarrow & \mbox{distorted mass line shape} \\ \rightarrow & \mbox{different for decay channels} \end{array}$

BGO-OD slice view

