

Introduction:

The origin of resonances in strong interactions.

Two ranges:

\mathbf{J}/ψ :	$c\bar{c}$ state bound in a Cornell-type potential $\left(-\frac{\alpha}{r}+br\right)$
---------------------	--

- $\chi_{c1}(3872)$: $D^{*0}\overline{D}^{0}$ + c.c. molecule bound by long-range pion exchange
- N(1535): (qqq) state required in the quark model or $N\eta \Lambda K \Sigma K$ molecule ? (qqq) from electroproduction !
- Here: $\Lambda(1405)$: (*qqq*) quark model state or $N\bar{K} \Sigma\pi$ molecular states ? $\Lambda(1360), \Sigma(1400), \Sigma(1490)$: $N\bar{K} - \Sigma\pi$ molecular states if they exist !

BnGa finds one $1/2^-$ resonance in 1300 - 1500 MeV range:

 $\Lambda(1405)$: [1422 \pm 3 - i(21 \pm 3)] MeV

History

Discovery experiment:

M. H. Alston, L. W. Alvarez, P. Eberhard, M. L. Good, W. Graziano, H. K. Ticho and S. G. Wojcicki, Phys. Rev. Lett. 6, 698 (1961)

Λ(1405)

Luis Walter Alvarez, 1911 - 1988 Nobelpreis f. Physik, 1968

Richard H. Dalitz (1966): Large K^-p scattering leads to a virtual bound state at 1410 MeV

R. H. Dalitz, T. C. Wong and G. Rajasekaran, Phys. Rev. 153, 1617 (1967).

$\Lambda(1405)$ is a virtual bound state

Wolfram Weise: Chiral Lagrangian used to construct a potential for S-wave meson-baryon interaction.

N. Kaiser, P. B. Siegel and W. Weise, Nucl. Phys. A 594, 325 (1995).

(Image: Mike Pennington) Richard Henry Dalitz, 1925 - 2006

Wolfram Weise, TUM

Λ(1405) is dynamically generated

Three dynamically generated poles in the $\Lambda(1405)$ region Sheet II; I=0: (1379.2 - i 27.6) MeV, (1433.7 - i 11.0) MeV I=1: (1444.0 - i 69.4) MeV

J. A. Oller and U. G. Meissner, Phys. Lett. B 500, 263 (2001)

D. Jido, J. A. Oller, E. Oset, A. Ramos and U. G. Meissner, Nucl. Phys. A 725, 181 (2003)

Ulf-G. Meißner. Uni Bonn

250

250

x=1.0

Chiral dynamics

A. Cieply and J. Smejkal, Eur. Phys. J. A 43, 191 (2010). Y. Ikeda, T. Hyodo and W. Weise, Nucl. Phys. A 881, 98 (2012).
 Z. H. Guo and J. A. Oller, Phys. Rev. C 87, no. 3, 035202 (2013). M. Mai and U. G. Meißner, Nucl. Phys. A 900, 51 (2013).
 L. Roca and E. Oset, Phys. Rev. C 87, 055201 (2013). M. Mai and U. G. Meißner, Eur. Phys. J. A 51, 30 (2015).
 L. Roca and E. Oset, Phys. Rev. C 88, 055206 (2013). A. Cieply, M. Mai, U. G. Meißner and J. Smejkal, Nucl. Phys. A 954, 17 (2016).
 K. Miyahara, T. Hyodo and W. Weise, Phys. Rev. C 98, 025201 (2018).

The strong attraction in the $\bar{K}N$ and in the $\pi\Sigma$ channels creates two poles around the $\Lambda(1405)$ energies and one or two Σ resonance(s) at about this mass:

 $\mathbf{8} \otimes \mathbf{8} \rightarrow \mathbf{1} \oplus \mathbf{8}_s \oplus \mathbf{8}_a \oplus \mathbf{10} \oplus \bar{\mathbf{10}} \oplus \mathbf{27}$

- 1. A $\pi\Sigma$ resonance resonance at 1356 MeV , Γ =296 MeV, mainly SU(3) singlet.
- 2. A *K*N quasibound state at M=1428 MeV, Γ=34 MeV, mainly SU(3) octet.
- 3. A(1692) as second octet state.
- 4. Two $\pi\Lambda$ resonances, $\Sigma(1401)$ and $\Sigma(1488)$ (or one at 1580 MeV).

Interference leads to the observed line shapes.

Alternatively, resonances are formed by three constituent quarks:

 $\mathbf{3}\otimes\mathbf{3}\otimes\mathbf{3}\rightarrow\mathbf{1}\oplus\mathbf{8}_{s}\oplus\mathbf{8}_{a}\oplus\mathbf{10}$

Quark model

Chiral dynamics

JP	1/2-	1/2-
8	Λ(1670)	$\Sigma(1490)$ or $\Sigma(1580)$
	٨(1428)	Σ(1400)
1	Λ(1356)	

Quark model

JP	1/2-	3/2-	5/2 ⁻	1/2-	3/2 ⁻	5/2
8	$\Lambda(1800)$ N(1650)	? N(1700)	<mark>Λ(1830)</mark> N(1675)	Σ(1750) _{N(1650)} Σ(1620)	? N(1700) ∑1670)	Σ(1775) _{N(1675)}
	N(1535)	N(1520)		N(1535)	N(1520)	
1	Λ(1405)	Λ(1520)				

 $\Lambda(1355), \Sigma(1400), \Sigma(1490)$ are supernumerous in the quark model. Are they real?

Bonn-Gatchina analysis

A.V. Anisovich, A.V. Sarantsev, V.A. Nikonov, V. Burkert, R. Schumacher, U. Thoma, and E. K., in preparation

Instead of the standard K-matrix approach

$$\hat{\mathbf{A}} = \hat{\mathbf{K}} \left(\mathbf{I} - i\hat{\rho}\hat{\mathbf{K}} \right)^{-1}$$

we use a modification

$$\mathbf{A} = \mathbf{K} \left(\mathbf{I} - \mathbf{Re} \, \mathbf{B} \hat{\mathbf{K}} - i \hat{
ho} \hat{\mathbf{K}}
ight)^{-1}$$

$$\int \frac{ds'}{\pi} \frac{A_{aj}(s,s')}{s'-s-i\epsilon} \rho_j(s') K_{jb}(s',s) A_{aj}(s,s) \operatorname{Re} B(s) K_{jb}(s,s) + i A_{aj}(s,s) \rho_j(s) K_{jb}(s)$$
where
$$\operatorname{Re} B(s) = \oint \frac{ds'}{\pi} \frac{\rho_j(s')}{s'-s}$$

where p is the principle-value integral. This approach provides a correct continuation of the amplitude below thresholds.

Two isovector resonances \longrightarrow Far below threshold and above fit range 8p One isoscalar resonance $\longrightarrow \Lambda(1405)$ 3p

CLAS data

K. Moriya *et al.* [CLAS Collaboration], "Differential Photoproduction Cross Sections of the Σ^0 (1385), Λ (1405), and Λ (1520)," Phys. Rev. C 88, 045201 (2013); Addendum: [Phys. Rev. C 88, no. 4, 049902 (2013)].

CLAS data on $\gamma p \rightarrow K^+ \Sigma^+ \pi^-$, $K^+ \Sigma^- \pi^+$ and $K^+ \Sigma^0 \pi^0$ $\Sigma(1385)$, $\Lambda(1405)$, K^* , and higher Λ and Σ resonances $\Sigma(1385)$ does not decay into $\Sigma^0 \pi^0$! (but Σ^0 decays into $\Lambda\gamma$, π^0 and γ in final state!)

Zooming in \cdots and likelihood fit to $\gamma p \rightarrow K^+ \Sigma^{\pm} \pi^{\mp}$

Predictions for $\gamma p \rightarrow K^+ \Sigma^0 \pi^0$:

BnGa fit (further data. Total cross sections)

BnGa fit (further data)

S. Prakhov *et al.*, " $K^- p \rightarrow \pi^0 \pi^0 \Lambda$ at $p_{K^-} = 514$ MeV/c to 750 MeV/c ", and Phys. Rev. C 69, 042202 (2004). " $K^- p \rightarrow \pi^0 \pi^0 \Sigma^0$ at $p_{K^-} = 514$ MeV/c to 750 MeV/c and comparison with other $\pi^0 \pi^0$ production," Phys. Rev. C 70, 034605 (2004).

BnGa fit (further data)

BnGa fit (continued)

Amplitudes

Black bold: our solution Long-dash-triple-dotted: Cieply (2011) Black dashed: Ikeda (2012) Green and blue: Guo (2012) Purple and red: Mai (2014).

A. Cieply and J. Smejkal, Nucl. Phys. A 881, 115 (2012). Y. Ikeda, T. Hyodo and W. Weise, Phys. Lett. B 706, 63 (2011). Z. H. Guo and J. A. Oller, Phys. Rev. C 87, no. 3, 035202 (2013). M. Mai and U.-G. Meißner, Eur. Phys., J 451, 30 (2015).

Summary

We have analyzed data on

- CLAS data on $\gamma p \rightarrow K^+ \Sigma^{\pm} \pi^{\mp}$ and predict $\gamma p \rightarrow K^+ \Sigma^0 \pi^0$
- BNL data on $K^- p \to \pi^0 \pi^0 \Lambda$ and $K^- p \to \pi^0 \pi^0 \Sigma$
- Total cross sections for K⁻ induced reactions
- ▶ Differential cross sections for $K^-p \rightarrow K^-p$ and $K^-p \rightarrow \bar{K}n$
- "Hemingway" data on $K^- p \rightarrow \pi^- \Sigma^+$ (1670) $\rightarrow \pi^- \pi^+ (\pi^\mp \Sigma^\pm)$
- ▶ Data on K^-p at rest including SIDARTHA data on $\Delta E i\Gamma/2$ and find

one isoscalar pole with $J^P=1/2^-$ in the $\Lambda(1405)$ region at $(1422\pm3)-{\rm i}(21\pm3)\,\text{MeV}$

The result is robust against leaving CLAS, BNL and the "Hemingway" data out of the data base.

Thank you for your attention!

Do we need the quark model?

Yes, we need it!

- Bottomonium and charmonium systems
- ► For *N**'s: SU(6)⊗0(3) symmetry
- First excitation shell: low-mass negative-parity states:

five N^* 's seen, five predicted

two Δ^* 's seen, two predicted

six Λ^* 's seen, seven predicted, one calculated to decouple from $\bar{K}N$

six Σ*'s seen, seven predicted

see M. Matveev talk

Second excitation shell: great progress in finding the missing resonances

see V. Burkert's talk

- ▶ Two-oscillators component in *N**'s de-excites in two-step cascades T. Seifen's talk
- Quark models (and the dynamical assumptions) can be wrong
- The quark model (and its symmetries) is supported by data!

Quark model

JP	1/2-	3/2-	5/2-	1/2-	3/2-	5/2-
8	Λ(1800) _{N(1650)} Λ(1670) _{N(1535)}	? N(1700) <mark>A(1690)</mark> N(1520)	<mark>Λ(1830)</mark> N(1675)	Σ(1750) _{N(1650)} Σ(1620) _{N(1535)}	? N(1700) Σ1670) N(1520)	Σ(1775) _{N(1675)}
1	Λ(1405)	Λ(1520)				

 $\begin{array}{l} \Lambda(1355), \, \Sigma(1400), \, \Sigma(1490) \text{ are supernumerous in the quark model.} \\ \text{Are they real?} \end{array}$

Energy dependence of the $\overline{K}N$ interaction and the two-pole structure of the $\Lambda(1405)$ – are they real?

János Révai

Abstract

It is shown, that the energy dependence of the chiral based $\bar{K}N$ potentials, responsible for the ocurence of two poles in the I=0 sector is the consequence of applying the on-shell factorization approximation¹. When the dynamical equation is solved without this approximation, the T-matrix has only one pole in the region of the $\Lambda(1405)$ resonance.

arXiv:1811.09039

¹: E. Oset and A. Ramos, "Nonperturbative chiral approach to S-wave $\bar{K}N$ interactions," Nucl. Phys. A 635, 99 (1998).

Scalar mesons

The center-of-gravity (c.o.g.) rule

$$M_{h_{b}(1P)} = \frac{1}{9} \left(5M_{\chi_{b2}(1P)} + 3M_{\chi_{b1}(1P)} + M_{\chi_{b0}(1P)} \right)$$

is excellently satisfied for heavy quarks:

	measured - predicted	
$\delta M_{h_c(1P)}$:	(0.08 \pm 0.61)	MeV
$\delta M_{h_b(1P)}$:	$-$ (0.57 \pm 1.08)	MeV
$\delta M_{h_b(2P)}$:	$-$ (0.4 \pm 1.3)	MeV

Light quarks:

	a_2, a_1, b_1	f_2, f_1, h_1	f'_2, f'_1, h'_1	K_0^*, K_{1A}, K_{1B}
c.o.g.	784 \pm 125 MeV	941 \pm 75 MeV	$309{\pm}180{ m MeV}$	710 MeV
	<i>a</i> ₀ (980)	<i>f</i> ₀ (980)	<i>f</i> ₀ (500)	<i>K</i> ₀ *(800)
	980 ± 20	990 ± 20	440 ± 15	682 ± 29