Photoproduction of Exotic N^* : from light quarks to charm and beauty

Xu CAO

in collaboration with Horst Lenske, Zhi Yang, Ju-Jun Xie, Jian-Ping Dai

The 12th International Workshop on the Physics of Excited Nucleons (NSTAR2019) 10-14 June, 2019

Baryon spectrum - N^* and Δ^*

- Nucleon: objects with internal components and structure.
- **2** Baryon spectrum: excitation of internal freedom \implies must be wide > 100 MeV (coupled strongly to πN , ηN )
- Sector State St

Conventional quark model

- More states are predicted in 3-quark models than seen in the πN scattering: misssing resonances
- 2 Less states are present in diquark models than seen in the πN and γN scattering: $P_{13}(1900)$ and $F_{15}(2000)$ (remedy?)
- Problem reappears in latticeQCD and Dyson-Schwinger calculations? Edwards et al. PRD84(2011)074508 (m_π = 396 MeV); Eichmann et al. PRD94(2016)094033 (varying m_π)
- In Baryon spectrum with heavy quarks? \Rightarrow Zou, Plenary talk on Wed.

Baryon spectrum - N^* and Δ^*

- Nucleon: objects with internal components and structure.
- **2** Baryon spectrum: excitation of internal freedom \implies must be wide > 100 MeV (coupled strongly to πN , ηN )
- Sector State St

Conventional quark model

- O More states are predicted in 3-quark models than seen in the πN scattering: misssing resonances
- 2 Less states are present in diquark models than seen in the πN and γN scattering: $P_{13}(1900)$ and $F_{15}(2000)$ (remedy?)
- Solution Problem reappears in lattice QCD and Dyson-Schwinger calculations? Edwards *et al.* PRD84(2011)074508 (m_{π} = 396 MeV); Eichmann *et al.* PRD94(2016)094033 (varying m_{π})
- **3** Baryon spectrum with heavy quarks? \Rightarrow Zou, Plenary talk on Wed.

- Graal: $\gamma n \rightarrow \eta n$ 1680 MeV, $\Gamma \sim 20$ MeV
- confirmed by many exp. groups and polarized measuerments PLB647(2007)23

- A2@MAMI: Werthmueller talk@Parallel B
- exotic *N**(1680) and *N**(1720)? PRL111(2013)232001

• □ • • • □ • • □ • • •

Xu CAO (IMP@CAS)

NSTAR2019

10-14 June, 2019 3 / 36

Shklyar et al. PLB650(2007)172

coupled-channel effects due to $S_{11}(1650)$ and $P_{11}(1710)$

key: neutron helicity amplitudes of $N^* \Rightarrow Briscoe, talk@Parallel B on Wed.$

Alternative I: interference in the $1/2^-$ wave - $S_{11}(1535)$ and $S_{11}(1650)$

Bonn-Gatchina and chiral quark model

Alternative II: strangeness threshold openings Döring and Nakayama

• EPECUR: $\pi^{\pm} p \rightarrow \pi^{\pm} p$ $S_{11}(1686)$ and $P_{11}(1720)$ PRC91(2015)025205;93(2015)062201

- Old data of $\pi^- p \rightarrow \eta n$:
- not contradictory with exotic N*(1686) and N*(1720)

< 17 ▶

• Graal: $\gamma p \rightarrow \gamma p$ 1681 MeV, 18 ± 6 MeV 1726 MeV, 21 ± 7 MeV

PRC91(2015)042201

- Graal: $\gamma n \rightarrow \gamma n$
- uncorrected quasifree
- 1685 MeV, $\Gamma < 30~\text{MeV}$

< 1 → <

PRC83(2011)022201

Baryon spectrum - $N_{c\bar{c}}^*$ $(P_c)!$

Clearer signal in charm sector @ LHCb!

- N* contain additional cc̄: Exotic Narrow N^{*}_{cc̄}
- 2 three P_c in $\Lambda_b^0 \rightarrow J/\psi p K^-$

1904.03947;PRL115(2015)072001;Neubert,Plenary talk on Wed.

Baryon spectrum - $N_{b\bar{b}}^*$ (P_b)?

- **1** N^* contain additional $b\bar{b}$: Exotic Narrow $N^*_{b\bar{b}}$?
- O Theoretically probably YES (Heavy Quark Symmetry)

PLB709(2012)70,PRL115(2015)122001,EPJC76(2016)624,NPA980(2018)21,PRD99(2019)014035

I How to search for them experimentally?

Baryon spectrum - $N_{c\bar{c}}^*$ $(P_c)!$

Clearer signal in charm sector @ LHCb!

- N* contain additional cc̄: Exotic Narrow N^{*}_{cc̄}
- 2 three P_c in $\Lambda_b^0 \rightarrow J/\psi p K^-$

1904.03947;PRL115(2015)072001;Neubert,Plenary talk on Wed.

Baryon spectrum - $N_{b\bar{b}}^*$ (P_b)?

- N^* contain additional $b\bar{b}$: Exotic Narrow $N^*_{b\bar{b}}$?
- O Theoretically probably YES (Heavy Quark Symmetry)

PLB709(2012)70,PRL115(2015)122001,EPJC76(2016)624,NPA980(2018)21,PRD99(2019)014035

• How to search for them experimentally?

< D > < A </p>

 $T_{fi} = V_{fi} + V_{fa}G_{ab}T_{bi} \Longrightarrow T_{fi} = K_{fi} + iK_{fa}ImG_{ab}T_{bi}$

K-matrix approximation

•
$$G_{ab} = \frac{ReG_{ab}}{I-iK_{fi}^{J\pm,l}} + iImG_{ab} \Rightarrow T_{fi}^{J\pm,l} = \frac{K_{fi}^{J\pm,l}}{1-iK_{fi}^{J\pm,l}}$$

- Unitarity holds easily with technical simplicity and flexibility but at the cost of analyticity.
- final states: $\gamma N, \pi N, \pi \pi N, \eta N, \omega N, K \Lambda, K \Sigma$
- Feuster & Penner & Shklyar & CAO & Lenske & Mosel: PRC58,457;59,460(1999):PRC66,055211;055212(2002):EPJA21,445(2004); PRC71,055206;72,015210(2005);

PLB650,172(2007);PRC80,058201(2009);87,015201(2013);88,055204(2013),PLB772,274(2017);PRC93,045206(2016)

 $K_{fi} = V_{fi} + \frac{V_{fa}ReG_{ab}K_{bi}}{s, u, t}$ -channel

K-matrix approximation

•
$$G_{ab} = \frac{ReG_{ab}}{I-iK_{6}^{J\pm,l}} + iImG_{ab} \Rightarrow T_{fi}^{J\pm,l} = \frac{K_{fi}^{J\pm,l}}{1-iK_{6}^{J\pm,l}}$$

• Unitarity holds easily with technical simplicity and flexibility but at the cost of analyticity.

- final states: $\gamma N, \pi N, \pi \pi N, \eta N, \omega N, K \Lambda, K \Sigma$
- Feuster & Penner & Shklyar & CAO & Lenske & Mosel: PRC58,457;59,460(1999):PRC66,055211;055212(2002);EPJA21,445(2004); PRC71,055206;72,015210(2005);

PLB650,172(2007);PRC80,058201(2009);87,015201(2013);88,055204(2013),PLB772,274(2017);PRC93,045206(2016)

A Coupled-Channel Analysis with $J \le 5/2$ and $\sqrt{s} < 2.0$ GeV.

- The πN and $K\Sigma$ production: isospin I = 1/2 and I = 3/2 resonances
- Compton scattering off the nucleon included perturbatively: re-scattering is only through hadronic states but ignoring the γN state
- initial and final vertices: electro-magnetic force
- In re-scattering between intermediate states: strong force
- **③** dedicate convolution of two different scales: α^2 and α_s

A Coupled-Channel Analysis with $J \le 5/2$ and $\sqrt{s} < 2.0$ GeV.

- The πN and $K\Sigma$ production: isospin I = 1/2 and I = 3/2 resonances
- Compton scattering off the nucleon included perturbatively: re-scattering is only through hadronic states but ignoring the γN state
- **(**) coupled-channel (T-matrix) equation is first solved for $\pi N \rightarrow MN$
- 2 In an independent second step, the $\gamma N \rightarrow MN$ can be extracted
- Finally, the Compton scattering amplitudes are calculated without free parameters

- The associate strangeness KΣ production in photo-induced reactions: Data from CBELSA, LEPS, CLAS, Graal and SAPHIR groups.
- Compton scattering off the nucleon: Graal data
- **1** resonances with isospin I = 3/2: Δ^*
- 2 most of the models are based on the old database before 2000.
- Ithe current inconclusive status of the old isobar models:
 - new resonances?
- the coupled-channel analysis of the $K\Sigma$ photoproduction:
 - Juelich-Bonn
 - Bonn-Gatchina
 - The Excited Baryon Analysis Center (EBAC@JLab): ANL-Osaka

Baryon spectrum

I (1075 MeV < W < 1350 MeV); II (1350 MeV < W < 1600 MeV); III (1600 MeV < W < 1800 MeV); IV (1800 MeV < W < 2250 MeV).

Xu CAO (IMP@CAS)

10-14 June, 2019 11 / 36

• $\gamma p \rightarrow K^+ \Sigma^0$: polarization observables (CLAS)

X.C.,V.Shklyar,H.Lenske PRC88(2013)055204

- C_z: determined by the Born term with additional small structures from resonances
- C_x : $D_{33}(1700)$ important in $d\sigma/d\Omega$, however bad for C_x
- $F_{35}(1905)$ and $F_{15}(1680)$ are seen

< □ > < / P >

Xu CAO (IMP@CAS)

 $ec{\gamma} m{p}
ightarrow \gamma m{p}$ beam asymmetry: Graal data $\,$ x. C., H. Lenske, PLB772(2017)274 $\,$

Xu CAO (IMP@CAS)

10-14 June, 2019 15 / 36

Δ^*	Ref.	BW mass [◊]	Γ _{tot} [◊]	$A_{\frac{1}{2}}$ or $A_{\frac{1}{2}}^{p}$ \heartsuit	$A_{\frac{3}{2}} \text{ or } A_{\frac{3}{2}}^{p} \heartsuit$
P ₃₃ (1232)	our	1227	110	-128 ± 6	-253 ± 8
	PDG	1232	117	-135 \pm 6	-255 ± 5
$D_{13}(1520)$	our	1505	103	-15 ± 1	146 ± 1
	PDG	1515	115	-20 ± 5	140 ± 10
$D_{33}(1700)$	our	1673	766	97	147
	new	1673	766	106 ± 5	142 ± 12
	PDG	1700	300	140 ± 30	140 ± 30
$F_{35}(1905)$	our	1842	619	54	-127
	new	1842	619	61 ± 10	-78 ∓ 15
	PDG	1880	330	22 ± 5	-45 ± 10
$S_{11}(1680)$	new	1681	2 ± 1	$32\pm10^{\dagger}$	
$P_{11}(1720)$	new	1726	2 ± 1	$35\pm10^{\dagger}$	

• ^: in MeV; $^\heartsuit:$ in 10^-3 GeV^{-1/2}; ^†: sign is not determined.

Xu CAO (IMP@CAS)

Exotic $N_{c\bar{c}}^*$ (P_c) in $\gamma p \rightarrow J/\psi p$

• P_r production x-section in $\gamma p \rightarrow Vp$:

$$\sigma_r = \frac{2 J + 1}{(2 s_1 + 1)(2 s_2 + 1)} \frac{4 \pi}{k_{in}^2} \frac{\Gamma^2}{4} \frac{\mathcal{B}(P_r \to \gamma p) \mathcal{B}(P_r \to V p)}{(W - M_r)^2 + \Gamma_r^2/4}$$

• Assuming $P_r \rightarrow \gamma p$ is dominated by the vector meson (VMD)

$$\mathcal{B}(P_r \to \gamma p) = \frac{3 \, \Gamma(V \to e^+ e^-)}{\alpha M_{J/\psi}} \left(\frac{k_{in}}{k_{out}}\right)^{2L+1} \mathcal{B}_L(P_r \to V p)$$

resulting into

$$\sigma_r \propto \mathcal{B}^2(P_c \rightarrow Vp)$$

!absence of triangle singularity!

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

• LHCb has given,

$$\mathcal{R} = \frac{\mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi p)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)}$$

independent of the spin and parity of P_c .

- LHCb also measured: $\mathcal{B}(\Lambda_b^0 \rightarrow J/\psi p K^-) = (3.2^{+0.6}_{-0.5}) \times 10^{-4}$
- So we expect that ${\cal B}(\Lambda^0_b o P^+_cK^-){\cal B}(P^+_c o J/\psi p)\sim 10^{-6}$

• GlueX&HALL-C@JLab found ${\cal B}(P_c^+ o J/\psi p) <$ several percentage

state	Mass [MeV]	Width [MeV]	<i>R</i> [%]
$P_{c}(4312)^{+}$	$4311.9 \pm 0.7^{+6.8}_{-0.6}$	$9.8\pm2.7^{+3.7}_{-4.5}$	
$P_{c}(4440)^{+}$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+8.7}_{-10.1}$	$1.11\pm0.33^{+0.22}_{-0.10}$
$P_{c}(4457)^{+}$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4\pm2.0^{+5.7}_{-1.9}$	$0.53 \pm 0.16^{+0.15}_{-0.13}$

LHCb has given,

$$\mathcal{R} = \frac{\mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi p)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)}$$

independent of the spin and parity of P_c .

- LHCb also measured: $\mathcal{B}(\Lambda_b^0 \rightarrow J/\psi p K^-) = (3.2^{+0.6}_{-0.5}) \times 10^{-4}$
- So we expect that ${\cal B}(\Lambda^0_b o P^+_cK^-){\cal B}(P^+_c o J/\psi p)\sim 10^{-6}$

• GlueX&HALL-C@JLab found $\mathcal{B}(P_c^+ o J/\psi p) <$ several percentage

state	Mass [MeV]	Width [MeV]	<i>R</i> [%]
$P_{c}(4312)^{+}$	$4311.9 \pm 0.7^{+6.8}_{-0.6}$	$9.8\pm2.7^{+3.7}_{-4.5}$	
$P_{c}(4440)^{+}$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+8.7}_{-10.1}$	$1.11\pm0.33^{+0.22}_{-0.10}$
$P_{c}(4457)^{+}$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4\pm2.0^{+5.7}_{-1.9}$	$0.53 \pm 0.16^{+0.15}_{-0.13}$

LHCb has given,

$$\mathcal{R} = \frac{\mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi p)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)}$$

independent of the spin and parity of P_c .

- LHCb also measured: $\mathcal{B}(\Lambda_b^0 \rightarrow J/\psi p K^-) = (3.2^{+0.6}_{-0.5}) \times 10^{-4}$
- So we expect that ${\cal B}(\Lambda^0_b o P^+_c K^-) {\cal B}(P^+_c o J/\psi p) \sim 10^{-6}$
- GlueX&HALL-C@JLab found $\mathcal{B}(P_c^+ \rightarrow J/\psi p) <$ several percentage

state	Mass [MeV]	Width [MeV]	R [%]
$P_{c}(4312)^{+}$	$4311.9 \pm 0.7^{+6.8}_{-0.6}$	$9.8\pm2.7^{+3.7}_{-4.5}$	$\begin{array}{c} 0.30 \pm 0.07 \substack{+0.34 \\ -0.09 \\ 1.11 \pm 0.33 \substack{+0.22 \\ -0.10 \end{array}} \end{array}$
$P_{c}(4440)^{+}$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+8.7}_{-10.1}$	$1.11 \pm 0.33^{+0.22}_{-0.10}$
$P_{c}(4457)^{+}$	$4457.3\pm0.6^{+4.1}_{-1.7}$	$6.4\pm2.0^{+5.7}_{-1.9}$	$0.53 \pm 0.16^{+0.15}_{-0.13}$

LHCb has given,

$$\mathcal{R} = \frac{\mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi p)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)}$$

independent of the spin and parity of P_c .

- LHCb also measured: $\mathcal{B}(\Lambda_b^0 \rightarrow J/\psi p K^-) = (3.2^{+0.6}_{-0.5}) \times 10^{-4}$
- So we expect that ${\cal B}(\Lambda^0_b o P^+_c K^-) {\cal B}(P^+_c o J/\psi p) \sim 10^{-6}$
- GlueX&HALL-C@JLab found $\mathcal{B}(P_c^+ \rightarrow J/\psi p) <$ several percentage

state	Mass [MeV]	Width [MeV]	<i>R</i> [%]
$P_{c}(4312)^{+}$	$4311.9 \pm 0.7^{+6.8}_{-0.6}$	$9.8\pm2.7^{+3.7}_{-4.5}$	
$P_{c}(4440)^{+}$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+8.7}_{-10.1}$	$1.11 \pm 0.33^{+0.22}_{-0.10}$
$P_{c}(4457)^{+}$	$4457.3\pm0.6^{+4.1}_{-1.7}$	$6.4\pm2.0^{+5.7}_{-1.9}$	$0.53 \pm 0.16^{+0.15}_{-0.13}$

Exotic $N_{c\bar{c}}^*$ (P_c) in $\gamma p \rightarrow J/\psi p$

• We conjecture accordingly,

$$2\% > \mathcal{B}(P_c^+ \to J/\psi p) > 0.05\%$$

 $10^{-3} > \mathcal{B}(\Lambda_b \to P_c^+ K^-) > 10^{-5}$

This loose bound in fact puts strong constraint on various models.

Exotic $N_{b\bar{b}}^*$ (P_b) in $\gamma p \to \Upsilon p$

- It can be reach by the planned Electron-ion collider in China (EicC) Energy: $3.5(e) \times 20(p)$ GeV Luminosity: $2 \sim 4 \times 10^{33}$ cm⁻² s⁻¹
- We know little about Υ-photoproduction.

non-resonant background within various models depends weakly on virtuality of photon due to large M_{Υ}

Xu CAO (IMP@CAS)

Exotic $N_{b\bar{b}}^*$ (P_b) in $\gamma p \rightarrow \Upsilon p$

- non-resonant Upsilon production: \sim 20 pb \sim 0.05M/month.
- The P_b @ peak \sim 0.3 nb \sim 0.78M/month.
- The two-body phase space would introduce a reduction factor of about five for near-threshold background events.
- virtual photon flux reduce electroproduction by two orders

Exotic $N_{b\overline{b}}^*$ (P_b) in $\gamma p \to \Upsilon p$

- production is enhanced if ion beam is used,
 - $e+{}^{3}He: 3.5 \text{ GeV} \times 40 \text{ GeV}$
- Designed Polarization of beams: e = 80%, p = 70%
 - noticeable if 2% $> \mathcal{B}(P_r^+ \rightarrow \textit{Vp}) > 0.05\%$
 - quantum number: J^P
 - EM form factor?

Xu CAO (IMP@CAS)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Compton scattering off the proton up to the third resonance region

- Δ states are largely determined in $K\Sigma$ production
 - P₃₃(1232) and D₁₃(1520) resonances below 1.6 GeV
 - D₃₃(1700) and F₃₅(1930) above 1.6 GeV
- no cusps are generated by the $K\Lambda$ and ωN threshold effect
- the model is readily extended to $\gamma n o \gamma n$ reaction

• $\gamma p \rightarrow J/\psi p$ from constrained 2% > $\mathcal{B}(P_c^+ \rightarrow J/\psi p) > 0.05\%$:

- As descendent and produced by a second second by a second se
- a scoupled-channel model?
- Searching for P_b in $\gamma p \rightarrow \Upsilon p$ in future EicC?

- Compton scattering off the proton up to the third resonance region
 - Δ states are largely determined in $K\Sigma$ production
 - *P*₃₃(1232) and *D*₁₃(1520) resonances below 1.6 GeV
 - D₃₃(1700) and F₃₅(1930) above 1.6 GeV
 - no cusps are generated by the $K\Lambda$ and ωN threshold effect
 - the model is readily extended to $\gamma n
 ightarrow \gamma n$ reaction

- $\gamma p \rightarrow J/\psi p$ from constrained 2% > $\mathcal{B}(P_c^+ \rightarrow J/\psi p) > 0.05\%$:
 - Solderendo active and polyerships about the
 - a a coupled channel model?
- Searching for P_b in $\gamma p \to \Upsilon p$ in future EicC?

- Compton scattering off the proton up to the third resonance region
 - Δ states are largely determined in $K\Sigma$ production
 - $P_{33}(1232)$ and $D_{13}(1520)$ resonances below 1.6 GeV
 - D₃₃(1700) and F₃₅(1930) above 1.6 GeV
 - no cusps are generated by the $K\Lambda$ and ωN threshold effect

• the model is readily extended to $\gamma n \rightarrow \gamma n$ reaction

- $\gamma p \rightarrow J/\psi p$ from constrained 2% > $\mathcal{B}(P_c^+ \rightarrow J/\psi p) > 0.05\%$:
 - Alternation and polarization observables?
 - Stabom lancel model?
- Searching for P_b in $\gamma p \rightarrow \Upsilon p$ in future EicC?

- Compton scattering off the proton up to the third resonance region
 - Δ states are largely determined in $K\Sigma$ production
 - P₃₃(1232) and D₁₃(1520) resonances below 1.6 GeV
 - D₃₃(1700) and F₃₅(1930) above 1.6 GeV
 - $\bullet\,$ no cusps are generated by the $K\Lambda$ and ωN threshold effect
 - narrow $S_{11}(1680)$ and $P_{11}(1720)?$
 - the model is readily extended to $\gamma n o \gamma n$ reaction

- $\gamma p \rightarrow J/\psi p$ from constrained 2% > $\mathcal{B}(P_c^+ \rightarrow J/\psi p) > 0.05\%$:
 - e diferential susceitars and polycosticus alegendies?
 - a a coupled-channel model?
- Searching for P_b in $\gamma p \rightarrow \Upsilon p$ in future EicC?

- Compton scattering off the proton up to the third resonance region
 - Δ states are largely determined in $K\Sigma$ production
 - P₃₃(1232) and D₁₃(1520) resonances below 1.6 GeV
 - D₃₃(1700) and F₃₅(1930) above 1.6 GeV
 - no cusps are generated by the $K\Lambda$ and ωN threshold effect
 - narrow $S_{11}(1680)$ and $P_{11}(1720)$?
 - the model is readily extended to $\gamma n
 ightarrow \gamma n$ reaction
- $\gamma p \rightarrow J/\psi p$ from constrained $2\% > \mathcal{B}(P_c^+ \rightarrow J/\psi p) > 0.05\%$:
 - Station langed stations is a
- Searching for P_b in $\gamma p \rightarrow \Upsilon p$ in future EicC?

- Compton scattering off the proton up to the third resonance region
 - Δ states are largely determined in $K\Sigma$ production
 - $P_{33}(1232)$ and $D_{13}(1520)$ resonances below 1.6 GeV
 - D₃₃(1700) and F₃₅(1930) above 1.6 GeV
 - no cusps are generated by the $K\Lambda$ and ωN threshold effect
 - narrow $S_{11}(1680)$ and $P_{11}(1720)$?
 - the model is readily extended to $\gamma n o \gamma n$ reaction
 - rare photoproduction data off the neutron
 - GRAAL $\gamma n
 ightarrow \gamma n$ data uncorrected by the detector efficiency
- $\gamma p \rightarrow J/\psi p$ from constrained $2\% > \mathcal{B}(P_c^+ \rightarrow J/\psi p) > 0.05\%$:
 - Slebom lenned-channel model?
- Searching for P_b in $\gamma p \to \Upsilon p$ in future EicC?

- Compton scattering off the proton up to the third resonance region
 - Δ states are largely determined in $K\Sigma$ production
 - P₃₃(1232) and D₁₃(1520) resonances below 1.6 GeV
 - D₃₃(1700) and F₃₅(1930) above 1.6 GeV
 - no cusps are generated by the $K\Lambda$ and ωN threshold effect
 - narrow $S_{11}(1680)$ and $P_{11}(1720)$?
 - $\bullet\,$ the model is readily extended to $\gamma n \to \gamma n$ reaction
 - rare photoproduction data off the neutron
 - GRAAL $\gamma n
 ightarrow \gamma n$ data uncorrected by the detector efficiency

• $\gamma p \rightarrow J/\psi p$ from constrained 2% > $\mathcal{B}(P_c^+ \rightarrow J/\psi p) > 0.05\%$:

Sabour lanced-channel model?

• Searching for P_b in $\gamma p \rightarrow \Upsilon p$ in future EicC?

- Compton scattering off the proton up to the third resonance region
 - Δ states are largely determined in $K\Sigma$ production
 - P₃₃(1232) and D₁₃(1520) resonances below 1.6 GeV
 - $D_{33}(1700)$ and $F_{35}(1930)$ above 1.6 GeV
 - no cusps are generated by the $K\Lambda$ and ωN threshold effect
 - narrow $S_{11}(1680)$ and $P_{11}(1720)$?
 - the model is readily extended to $\gamma n \rightarrow \gamma n$ reaction
 - rare photoproduction data off the neutron
 - GRAAL $\gamma n
 ightarrow \gamma n$ data uncorrected by the detector efficiency

• $\gamma p
ightarrow J/\psi p$ from constrained $2\% > \mathcal{B}(P_c^+
ightarrow J/\psi p) > 0.05\%$:

• Searching for P_b in $\gamma p \rightarrow \Upsilon p$ in future EicC?

Thanks for your attention!!

- Compton scattering off the proton up to the third resonance region
 - Δ states are largely determined in $K\Sigma$ production
 - P₃₃(1232) and D₁₃(1520) resonances below 1.6 GeV
 - D₃₃(1700) and F₃₅(1930) above 1.6 GeV
 - no cusps are generated by the $K\Lambda$ and ωN threshold effect
 - narrow $S_{11}(1680)$ and $P_{11}(1720)$?
 - the model is readily extended to $\gamma n
 ightarrow \gamma n$ reaction
 - rare photoproduction data off the neutron
 - GRAAL $\gamma n \rightarrow \gamma n$ data uncorrected by the detector efficiency

• $\gamma p \rightarrow J/\psi p$ from constrained 2% > $\mathcal{B}(P_c^+ \rightarrow J/\psi p) > 0.05\%$:

differential x-section and polarization observables?

a coupled-channel model (

• Searching for P_b in $\gamma p \rightarrow \Upsilon p$ in future EicC?

Thanks for your attention!!

- Compton scattering off the proton up to the third resonance region
 - Δ states are largely determined in $K\Sigma$ production
 - P₃₃(1232) and D₁₃(1520) resonances below 1.6 GeV
 - D₃₃(1700) and F₃₅(1930) above 1.6 GeV
 - no cusps are generated by the $K\Lambda$ and ωN threshold effect
 - narrow $S_{11}(1680)$ and $P_{11}(1720)$?
 - the model is readily extended to $\gamma n \rightarrow \gamma n$ reaction
 - rare photoproduction data off the neutron
 - GRAAL $\gamma n \rightarrow \gamma n$ data uncorrected by the detector efficiency
- $\gamma p \rightarrow J/\psi p$ from constrained 2% > $\mathcal{B}(P_c^+ \rightarrow J/\psi p) > 0.05\%$:
 - differential x-section and polarization observables?
 - a coupled-channel model?
- Searching for P_b in $\gamma p \rightarrow \Upsilon p$ in future EicC?

Thanks for your attention!!

- Compton scattering off the proton up to the third resonance region
 - Δ states are largely determined in $K\Sigma$ production
 - P₃₃(1232) and D₁₃(1520) resonances below 1.6 GeV
 - D₃₃(1700) and F₃₅(1930) above 1.6 GeV
 - no cusps are generated by the $K\Lambda$ and ωN threshold effect
 - narrow $S_{11}(1680)$ and $P_{11}(1720)$?
 - the model is readily extended to $\gamma n
 ightarrow \gamma n$ reaction
 - rare photoproduction data off the neutron
 - GRAAL $\gamma n \rightarrow \gamma n$ data uncorrected by the detector efficiency
- $\gamma p \rightarrow J/\psi p$ from constrained 2% > $\mathcal{B}(P_c^+ \rightarrow J/\psi p) > 0.05\%$:
 - differential x-section and polarization observables?
 - a coupled-channel model?
- Searching for P_b in $\gamma p \rightarrow \Upsilon p$ in future EicC?

Thanks for your attention!!!

- Compton scattering off the proton up to the third resonance region
 - Δ states are largely determined in $K\Sigma$ production
 - P₃₃(1232) and D₁₃(1520) resonances below 1.6 GeV
 - $D_{33}(1700)$ and $F_{35}(1930)$ above 1.6 GeV
 - no cusps are generated by the $K\Lambda$ and ωN threshold effect
 - narrow $S_{11}(1680)$ and $P_{11}(1720)$?
 - the model is readily extended to $\gamma n
 ightarrow \gamma n$ reaction
 - rare photoproduction data off the neutron
 - GRAAL $\gamma n \rightarrow \gamma n$ data uncorrected by the detector efficiency
- $\gamma p \rightarrow J/\psi p$ from constrained 2% > $\mathcal{B}(P_c^+ \rightarrow J/\psi p) > 0.05\%$:
 - differential x-section and polarization observables?
 - a coupled-channel model?
- Searching for P_b in $\gamma p \rightarrow \Upsilon p$ in future EicC?

Thanks for your attention!!!

- Compton scattering off the proton up to the third resonance region
 - Δ states are largely determined in $K\Sigma$ production
 - P₃₃(1232) and D₁₃(1520) resonances below 1.6 GeV
 - $D_{33}(1700)$ and $F_{35}(1930)$ above 1.6 GeV
 - no cusps are generated by the $K\Lambda$ and ωN threshold effect
 - narrow $S_{11}(1680)$ and $P_{11}(1720)$?
 - the model is readily extended to $\gamma n
 ightarrow \gamma n$ reaction
 - rare photoproduction data off the neutron
 - GRAAL $\gamma n
 ightarrow \gamma n$ data uncorrected by the detector efficiency
- $\gamma p \rightarrow J/\psi p$ from constrained 2% > $\mathcal{B}(P_c^+ \rightarrow J/\psi p) > 0.05\%$:
 - differential x-section and polarization observables?
 - a coupled-channel model?
- Searching for P_b in $\gamma p \rightarrow \Upsilon p$ in future EicC?

. Thanks for your attention!!!

- Compton scattering off the proton up to the third resonance region
 - Δ states are largely determined in $K\Sigma$ production
 - $P_{33}(1232)$ and $D_{13}(1520)$ resonances below 1.6 GeV
 - $D_{33}(1700)$ and $F_{35}(1930)$ above 1.6 GeV
 - no cusps are generated by the $K\Lambda$ and ωN threshold effect
 - narrow $S_{11}(1680)$ and $P_{11}(1720)$?
 - the model is readily extended to $\gamma n \rightarrow \gamma n$ reaction
 - rare photoproduction data off the neutron
 - GRAAL $\gamma n \rightarrow \gamma n$ data uncorrected by the detector efficiency
- $\gamma p \rightarrow J/\psi p$ from constrained 2% > $\mathcal{B}(P_c^+ \rightarrow J/\psi p) > 0.05\%$:
 - differential x-section and polarization observables?
 - a coupled-channel model?
- Searching for P_b in $\gamma p \rightarrow \Upsilon p$ in future EicC?

. Thanks for your attention!!!

Spares: Frame

FIG. 1. (Color online) In the overall reaction center of mass, the coordinate system can be oriented along the outgoing K^+ meson $\{\hat{x}', \hat{y}', \hat{z}'\}$ or along the incident photon direction $\{\hat{x}, \hat{y}, \hat{z}\}$. The dotted box represents the rest frame of the hyperon and the coordinate system used for specifying the polarization components. The red arrows represent polarization vectors.

・ < 言 ト < 言 ト 言 の Q (C 10-14 June, 2019 24 / 36

Image: A mathematical states of the state

Spares: Observables

Observable	Required polarization					
	Beam	Target	Hyperon			
Single polarization & cross section						
A, $\frac{d\sigma}{d\Omega}$	-	-	-			
Σ	linear	-	-			
Т	-	transverse	-			
Р	-	-	along y'			
	Beam and target	polarization				
G	linear	along z	-			
Н	linear	along x	-			
Ε	circular	along z	-			
F	circular	along x	-			
	Beam and recoil bar	yon polarization				
$O_{\chi'}$	linear	_	along x'			
$O_{z'}$ $C_{x'}$	linear	-	along z'			
$C_{x'}$	circular	-	along x'			
$C_{z'}$	circular	-	along z'			
Target and recoil baryon polarization						
$T_{x'}$	_	along x	along x'			
$T_{z'}$	-	along x	along z'			
$L_{x'}$	-	along z	along x'			
$L_{z'}$	-	along z	along z'			

Physically, C_x and C_z measure the transfer of circular polarization, or helicity, of the incident photon on an unpolarized target to the produced hyperon.

Xu CAO (IMP@CAS)

< □ > < / P >

- Assuming the photon behaves as an isoscalar particle, isospin relations between channels of pion photoproduction are violated explicitly in experiment: $\Delta \rightarrow N\gamma$
- Electromagnetic couplings are dependent on the different charge states of a particle and thus break the isospin symmetry
- For the isovector photon-isovector photon γp → γp amplitudes: When both initial and final photons are in isovector states, the total isospin could be either *I* = 1/2 or *I* = 3/2, respectively, thus being weighted differently in the rescat-tering part.

- However.... πN data is not enough for the model calculation.
- i.e. $\pi^+ p \rightarrow K^+ \Sigma^+$:
 - Giessen model: P_{31} dominates at threshold, D_{35} and P_{33} are important at high energies.
 - 2 Juelich model: S_{31} dominates, F_{37} is seemed at high energies.
 - Bonn-Gatchina PWA: P₃₃ is the most essential, and high partial waves are important at high energies.
- Secondary π beams are expected in HADES@GSI, JLab, and J-PARC.
 - Conventional πN experiment revived?
- Plenty of photoproduction data should be used.

Spares: PWA

- 11 N^* resonances with I = 1/2
- 9 Δ* resonances with I = 3/2 elastic πN partial waves: γN → πN multipoles: GWU

Λ *	٨P	ΔP
Δ^*	$A^p_{\frac{1}{2}}$	$A^{\mu}_{\frac{3}{2}}$
$S_{31}(1620)$	-58	
$P_{31}(1750)$	1	—
$P_{33}(1232)$	-128	-253
$P_{33}(1600)$	-10	-17
$P_{33}(1920)$	21	25
$D_{33}(1700)$	97	147
$D_{35}(1930)$	-66	1
$F_{35}(1905)$	54	-127
$F_{35}(2000)$	18	-23

Xu CAO (IMP@CAS)

Xu CAO (IMP@CAS)

Spares: $\gamma p \rightarrow K^0 \Sigma^+$

- $\gamma p \rightarrow K^0 \Sigma^+$: CBELSA EPJA35(2008) CLAS thesis(2003) less accurately reproduced, becoming worse above 1.9 GeV
- problem in the dσ/dω: non-resonant contribution
- recoil polarization P_{Σ} : data with large error bars: role of $D_{15}(1675)$

Xu CAO (IMP@CAS)

10-14 June, 2019 30 / 36

	gnkΣ	gnκ ₀ *Σ	gnk*Σ	$\kappa_{NK^*\Sigma}$	$g_{NK_1\Sigma}$	$\kappa_{NK_1\Sigma}$
new	-5.41	-32.94	0.83	-1.71	3.67	-2.58
old	2.48	-26.15	4.33	-0.86	22.80	2.40

Table: Born couplings in the model.

- *t*-channel K_1 and K_0^* meson exchange: small
- $K\Lambda$ production, PRC72,015210(2005): $g_{NK\Lambda} = -6.04$ (CLAS) or -4.70 (SAPHIR) \Rightarrow SU(3) symmetry: the relative sign of $NK\Sigma$ and $NK\Lambda$ is negative \Rightarrow confirmed by the Bonn-Gatchina (EPJA)
- $D_{13}(1520)$, $D_{15}(1675)$, $D_{35}(1930)$ and $F_{15}(1680)$ states, have large couplings to the $K\Sigma$ channel.

Spares: $pp \rightarrow nK^+\Sigma^+$

- A clean isospin filter: $P_{31}(1750)$, $P_{31}(1910)$, and $S_{31}(1620)$
- but a challenge to experiment: neutron in three final states see X-Y Wang, X.C.*, J-J Xie, X-R Chen, PRC92, 015202 (2015)

$\chi^2/num.$	data num.	Solid	Shaded	Dotted
$\gamma p \rightarrow \gamma p: d\sigma/d\Omega$	95*	92.2	25.9	60.2
$\gamma p \rightarrow \gamma p: \Sigma$	78*	1.5	2.5	1.7
$\gamma p \rightarrow K \Sigma$: all	909	2.0	2.8	3.1

- *: only data between 1.6 1.8 GeV are included.
- Solid: from the $K\Sigma$ solution
- Shaded: refit by including Compton scattering
- Dottedadd $S_{11}(1680)$, $P_{11}(1720)$, only 1σ significance!

The total cross section of non-resonant Upsilon photo-production can be read as

$$\sigma_{V} = \mathcal{N}W^{\delta(Q^{2})} = \mathcal{N}W^{\alpha+\beta\ln(Q^{2}+M_{v}^{2})}$$

The merit of this simple parameterization is that it is applicable to all DVMP with proper Q^2 dependence. The parameters α and β have been determined by the data of DVMP to be $\alpha = 0.31 \pm 0.02$ and $\beta = 0.13 \pm 0.01$. The corresponding $\delta(Q^2 = 0) = 0.89$, confronted with the perturbative QCD prediction $\delta \sim 1.7$ The normalization \mathcal{N} is determined by the data of $\gamma p \rightarrow \Upsilon p$ at high energies to be 2.62 ± 0.38 nb. The production of exotic state candidate P_b in $\gamma p \rightarrow \Upsilon p$ can be written as

$$\sigma_{R} = \frac{2J+1}{(2s_{1}+1)(2s_{2}+1)} \frac{4\pi}{k_{in}^{2}} \frac{\Gamma^{2}}{4} \frac{\mathcal{B}(P_{b} \to \gamma p) \mathcal{B}(P_{b} \to \Upsilon(1S)p)}{(W-M)^{2} + \Gamma^{2}/4}$$

- 1. L. Favart, M. Guidal, T. Horn and P. Kroll, Eur. Phys. J. A 52, no. 6, 158 (2016)
- 2. R. Aaij et al. [LHCb Collaboration], JHEP 1509, 084 (2015)
- 3. J. Breitweg et al. [ZEUS Collaboration], Phys. Lett. B 437, 432 (1998)
- 4. S. Chekanov et al. [ZEUS Collaboration], Phys. Lett. B 680, 4 (2009)
- 5. C. Adloff et al. [H1 Collaboration], Phys. Lett. B 483, 23 (2000)
- 6. CMS Collaboration [CMS Collaboration], CMS-PAS-FSQ-13-009.
- 7. J. J. Wu and B. S. Zou, Phys. Lett. B 709, 70 (2012)
- 8. M. Karliner and J. L. Rosner, Phys. Rev. Lett. 115, no. 12, 122001 (2015)
- 9. M. Karliner and J. L. Rosner, Phys. Lett. B 752, 329 (2016)

Photoproduction of Exotic *N**: from light quarks to charm and beauty

We explore the photo-production of possible exotic N^* , which are narrow pentaquark candidates containing light quarks or charm or beauty. The latter two are also known as P_c and P_b states in literatures. We analyzed the Compton scattering off the proton in the third resonance region in a coupled-channel effective Lagrangian model with K-matrix approximation. The evidence of exotic N^* with light quarks are found to be weak at present. Motivated by the P_c observed by LHCb, we discussed the possible signal of P_c and P_b states in $\gamma p \rightarrow J/\psi p$ and $\gamma p \rightarrow \Upsilon p$, respectively at an Electron-Ion Collider (EIC) in order to disentangle the nature of these states.