NSTAR2019

Recent results of pion and kaon photoproduction at SPring-8/LEPS

Jun / 11 / 2019

RCNP Osaka University / Nagoya University

Hideki Kohri

Super Photon ring - 8 GeV

Electron storage ring

- 8 GeV electron beam
- Diameter \approx 457 m
- RF 508 MHz
- 1-bunch spread is within $\sigma = 12$ psec.
- Beam Current = 100 mA

SPring-8 beamline map

LEPS2 new beamline constructed in 2011

LEPS facility constructed in 2000

P~90% at the maximum photon energy.

LEPS detector (optimized to detect ϕ decaying to K+K-)

New experimental setup for high momentum π

Physics objectives

One of our physics objectives is to understand how hadrons are produced. I want to obtain unified understanding of various $q\bar{q}$ productions.

(1)
$$\gamma p \rightarrow \pi^+$$
 n reaction

dd production in the final state

(2)
$$\gamma p \rightarrow K^+\Lambda$$
 and $K^+\Sigma^0$ reactions

 $s\bar{s}$ production in the final state

(3)
$$\gamma p \rightarrow \pi^- \Delta^{++}$$
 reaction

 $u\bar{u}$ production in the final state

(4)
$$\gamma p \rightarrow \pi^+ \Delta^0$$
 reaction

dd production in the final state

Another physics objective Missing nucleon resonance search

Quark models predict more nucleon resonances than observed experimentally.

Such missing nucleon resonances may be coupled to other channels than πN .

Reaction mechanisms of KY photoproduction

(1) $\vec{\gamma} p \rightarrow \pi^+$ n reaction $d\bar{d}$ production

Title : Differential cross section and photon-beam asymmetry for the γ p -> π^+ n reaction at forward π^+ angles at E_γ =1.5-2.95 GeV

Authors: H. Kohri, S.Y. Wang, S.H. Shiu, W.C. Chang, Y. Yanai et al. LEPS Collaboration

Published in Phys. Rev. C 015205 (2018) on the 22nd of Jan.

Missing mass $p(\gamma, \pi^+)X$

 π -angle: $0.6 < \cos\theta < 1$

 E_{γ} range: 1.5-2.95 GeV

Neutron peaks are separately observed for $0.6 < \cos\theta < 0.966$.

Positron mis-identification produces background between n and Δ^0 for $0.966 < \cos\theta < 1$.

Differential cross sections for $\gamma p \rightarrow \pi^+ n$

Forward peaking cross sections are observed. t-channel reaction is found to be dominant.

Differential cross sections for $\gamma p \rightarrow \pi^+ n$

Cross sections decrease as E_{γ} increases for $0.6 < \cos\theta < 0.9$.

LEPS

The energy dependence of $E_{\gamma} < 2.2$ GeV is different for $0.9 < \cos\theta < 1$.

This energy dependence might be due to N^* or Δ^* , as reported by the DESY group.

Good agreement with

Ratio $(N_V - N_H) / (N_V + N_H)$

$$P_{\gamma} \Sigma \cos 2\phi_{\pi} = \frac{N_V - N_H}{N_V + N_H}$$

 N_V : Yields for vertical polarization data

 N_H : Yields for horizontal polarization data

 P_{γ} : Photon polarization

 Σ : Photon-beam asymmetry

 π^+ prefers to scatter at ϕ_{π} angles perpendicular to the polarization plane.

Photon-beam asymmetries for γ p -> π ⁺ n are found to be positive.

Photon-beam asymmetry Σ for $\gamma p \rightarrow \pi^+ n$

First photon-beam asymmetry data for $E_{\gamma} > 1.9$ GeV.

Positive asymmetries are basically explained by ρ -meson exchange in the t-channel. The asymmetries become larger as $\cos\theta$ increases.

(2) $\vec{\gamma} p \rightarrow K^+ \Lambda$ and $K^+ \Sigma^0$ reactions $s\bar{s}$ production

Title : Photoproduction of Λ and Σ^0 hyperons off protons with linearly polarized photons at E_{γ} =1.5-3.0 GeV

Authors: S.H. Shiu, H. Kohri, W.C. Chang et al. LEPS Collaboration

Published in Phys. Rev. C 97 015208 (2018) on the 31st of Jan.

Missing mass $p(\gamma, K^+)X$

2018 data $E_{\gamma} = 1.5 - 3.0 \text{ GeV}$

FIG. 1. Missing mass spectrum of $\gamma p \to K^+ X$ reaction $[\text{MM}_X(\gamma p, K^+)]$ at $E_{\gamma} = 1.5 - 3.0 \text{ GeV}$.

2006 data $E_{\gamma} = 1.5 - 2.4 \text{ GeV}$

Difficulty in particle identification for high momentum K⁺

The acceptance of LEPS spectrometer is limited. The fraction of 2-track events is only 5% of all data.

Differential cross sections for $\gamma p \rightarrow K^+ \Lambda$ and $K^+ \Sigma^0$

First cross section data for LEPS at $2.4 < E_{\gamma} < 3$ GeV.

 $K^+\Lambda$ cross sections are larger than $K^+\Sigma^0$ cross sections.

No evident structure due to N^* or Δ^* .

Photon-beam asymmetry for $K^+\Lambda$ and $K^+\Sigma^0$

• LEPS2018

☐ LEPS2006

First photon-beam asymmetries data for $E_{\nu} > 2.4$ GeV.

The asymmetries increase gradually as E_{γ} increases for both the reactions. K^* -exchange contribution becomes larger.

M. Guidal et al./Nuclear Physics A 627 (1997) 645-678

SLAC data (1979)

21

New data with higher statistics are analyzed now

We will be able to provide more precise data in the near future.

(3) $\vec{\gamma} p \rightarrow \pi^- \Delta^{++}$ reaction

uu production

Title : Differential cross section and photon-beam asymmetry for the γ p -> $\pi^- \Delta^{++}(1232)$ reaction at forward π^- angles for E_{γ} =1.5-2.95 GeV

Authors: H. Kohri, S.H. Shiu, W.C. Chang, Y. Yanai, et al. LEPS Collaboration

Published in Phys. Rev. Lett. 120 202004 (2018) on the 18th of May.

Missing mass $p(\gamma, \pi^-)X$

Missing mass is fitted with relativistic Breit-Wigner shape for Δ , 2π / ρ , 3π , and e^- curves.

Comparison of d\sigma/dcos\theta between \pi^-\Delta^{++}(\bullet) and \pi^+ n(\blacksquare)

Strong forward peaking cross sections suggest t-channel reaction is dominant.

Differential cross sections for $\gamma p \rightarrow \pi^- \Delta^{++}$

First high-statistics cross section data. $d\sigma/d\cos\theta$ decreases as E_{γ} increases. Strong forward peaking (π -exchange).

Theoretical calculations by S.i. Nam well reproduce the data.

The energy dependence of $E_{\gamma} < 1.8$ GeV cannot be reproduced for $\cos \theta > 0.9$. N^* or Δ^* ?

- LEPS
- O SAPHIR2005
- **\(\DESY1968 \)**
- LAMP2 1980
- **SLAC1972**

SAPHIR total cross sections

C. Wu et al. Eur. Phys. J. A 23 (2005) 317

Photon-beam asymmetry for γ p -> $\pi^-\Delta^{++}$

First asymmetry data for $1.5 < E_{\gamma} < 2.8$ GeV.

Asymmetries are found to be negative for most of LEPS kinematical regions, suggesting π -exchange dominance.

Theoretical calculations by S.i. Nam well reproduce negative asymmetries for $\cos \theta > 0.933$.

The calculations cannot reproduce the data for $\cos \theta < 0.9$.

Additional unnatural parity exchange is needed.

- LEPS
- **SLAC1972**

(4) $\vec{\gamma} p \rightarrow \pi^+ \Delta^0$ reaction $d\bar{d}$ production

Missing mass is fitted with relativistic Breit-Wigner shape for Δ , $2\pi/\rho$, 3π , and e^- or e^+ curves.

Comparison between uu and dd productions

uū production is precisely compared with dd production by the $\gamma p \rightarrow \pi^- \Delta^{++}$ and $\pi^+ \Delta^0$ reactions

I expect this comparison would give important information to understand how hadrons are produced.

Expected cross section ratio $\sigma(\pi^+\Delta^0)/\sigma(\pi^-\Delta^{++})$

s- channel

t- channel

Ratio $\sigma(\pi^+\Delta^0)/\sigma(\pi^-\Delta^{++})$

E_γ (GeV)

(dd production / uu production)

Photon beam asymmetry for γ p -> $\pi^-\Delta^{++}$ and γ p -> $\pi^+\Delta^0$ reactions

Summary and future plan

We took high momentum charged pion data for the first time. It enables us to study $u\bar{u}$, $d\bar{d}$, and $s\bar{s}$ productions and we want to obtain unified understanding of these $q\bar{q}$ productions.

(1) $\gamma p \rightarrow \pi^+ n$ reaction data dd production

- Published in Phys. Rev. C on Jan/22/2018
- (2) γ p -> K⁺ Λ and K⁺ Σ^0 reaction data $s\overline{s}$ production
- Published in Phys. Rev. C on Jan/31/2018 New data are analyzed now.

(3) γ p -> $\pi^- \Delta^{++}$ reaction data uu production

Published in Phys. Rev. Lett. on May/18/2018

(4) γ p -> π^+ Δ^0 reaction data. $\frac{1}{dd}$ production Physics paper is prepared.

Refrigerators for polarized HD target

Osaka RCNP DRS

Osaka RCNP TC1

RCNP -> SPring-8 SC

SPring-8

T=4KB = 0.2T

T=2KB=1T

B=17 T

T=4K B=0.2T

SPring-8 **IBC**

T=300mK B=1 T

Status of polarized HD target

- We are developing a polarized HD target for the near future LEPS experiments using polarized photons and HD targets.
 We will be able to obtain much more information to understand hadron photoproduction.
- The polarization of H is 44+-1% and the relaxation time of the H polarization is 8+-2 months.
 These performances are good enough for physics runs.
- We need skills to transport the HD target from the first cryostat to the last one.
 - After acquiring these skills, we will start the physics runs.
- Previously, SPring-8-II(8 GeV -> 6 GeV) planed to start in 2020.
 But the schedule is largely delayed.
 - We still have some years for taking physics data with HD. 36

Thank you