NSTAR2019 # Recent results of pion and kaon photoproduction at SPring-8/LEPS Jun / 11 / 2019 RCNP Osaka University / Nagoya University Hideki Kohri ### **Super Photon ring - 8 GeV** #### Electron storage ring - 8 GeV electron beam - Diameter \approx 457 m - RF 508 MHz - 1-bunch spread is within $\sigma = 12$ psec. - Beam Current = 100 mA ### **SPring-8 beamline map** #### LEPS2 new beamline constructed in 2011 # LEPS facility constructed in 2000 P~90% at the maximum photon energy. #### LEPS detector (optimized to detect ϕ decaying to K+K-) ### New experimental setup for high momentum π # Physics objectives One of our physics objectives is to understand how hadrons are produced. I want to obtain unified understanding of various $q\bar{q}$ productions. (1) $$\gamma p \rightarrow \pi^+$$ n reaction dd production in the final state (2) $$\gamma p \rightarrow K^+\Lambda$$ and $K^+\Sigma^0$ reactions $s\bar{s}$ production in the final state (3) $$\gamma p \rightarrow \pi^- \Delta^{++}$$ reaction $u\bar{u}$ production in the final state (4) $$\gamma p \rightarrow \pi^+ \Delta^0$$ reaction dd production in the final state # Another physics objective Missing nucleon resonance search Quark models predict more nucleon resonances than observed experimentally. Such missing nucleon resonances may be coupled to other channels than πN . #### Reaction mechanisms of KY photoproduction (1) $\vec{\gamma} p \rightarrow \pi^+$ n reaction $d\bar{d}$ production Title : Differential cross section and photon-beam asymmetry for the γ p -> π^+ n reaction at forward π^+ angles at E_γ =1.5-2.95 GeV Authors: H. Kohri, S.Y. Wang, S.H. Shiu, W.C. Chang, Y. Yanai et al. LEPS Collaboration Published in Phys. Rev. C 015205 (2018) on the 22nd of Jan. # Missing mass $p(\gamma, \pi^+)X$ π -angle: $0.6 < \cos\theta < 1$ E_{γ} range: 1.5-2.95 GeV Neutron peaks are separately observed for $0.6 < \cos\theta < 0.966$. Positron mis-identification produces background between n and Δ^0 for $0.966 < \cos\theta < 1$. # Differential cross sections for $\gamma p \rightarrow \pi^+ n$ Forward peaking cross sections are observed. t-channel reaction is found to be dominant. #### Differential cross sections for $\gamma p \rightarrow \pi^+ n$ Cross sections decrease as E_{γ} increases for $0.6 < \cos\theta < 0.9$. #### LEPS The energy dependence of $E_{\gamma} < 2.2$ GeV is different for $0.9 < \cos\theta < 1$. This energy dependence might be due to N^* or Δ^* , as reported by the DESY group. Good agreement with ## Ratio $(N_V - N_H) / (N_V + N_H)$ $$P_{\gamma} \Sigma \cos 2\phi_{\pi} = \frac{N_V - N_H}{N_V + N_H}$$ N_V : Yields for vertical polarization data N_H : Yields for horizontal polarization data P_{γ} : Photon polarization Σ : Photon-beam asymmetry π^+ prefers to scatter at ϕ_{π} angles perpendicular to the polarization plane. Photon-beam asymmetries for γ p -> π ⁺ n are found to be positive. ### Photon-beam asymmetry Σ for $\gamma p \rightarrow \pi^+ n$ First photon-beam asymmetry data for $E_{\gamma} > 1.9$ GeV. Positive asymmetries are basically explained by ρ -meson exchange in the t-channel. The asymmetries become larger as $\cos\theta$ increases. # (2) $\vec{\gamma} p \rightarrow K^+ \Lambda$ and $K^+ \Sigma^0$ reactions $s\bar{s}$ production Title : Photoproduction of Λ and Σ^0 hyperons off protons with linearly polarized photons at E_{γ} =1.5-3.0 GeV Authors: S.H. Shiu, H. Kohri, W.C. Chang et al. LEPS Collaboration Published in Phys. Rev. C 97 015208 (2018) on the 31st of Jan. # Missing mass $p(\gamma, K^+)X$ 2018 data $E_{\gamma} = 1.5 - 3.0 \text{ GeV}$ FIG. 1. Missing mass spectrum of $\gamma p \to K^+ X$ reaction $[\text{MM}_X(\gamma p, K^+)]$ at $E_{\gamma} = 1.5 - 3.0 \text{ GeV}$. 2006 data $E_{\gamma} = 1.5 - 2.4 \text{ GeV}$ #### Difficulty in particle identification for high momentum K⁺ The acceptance of LEPS spectrometer is limited. The fraction of 2-track events is only 5% of all data. #### Differential cross sections for $\gamma p \rightarrow K^+ \Lambda$ and $K^+ \Sigma^0$ First cross section data for LEPS at $2.4 < E_{\gamma} < 3$ GeV. $K^+\Lambda$ cross sections are larger than $K^+\Sigma^0$ cross sections. No evident structure due to N^* or Δ^* . #### Photon-beam asymmetry for $K^+\Lambda$ and $K^+\Sigma^0$ • LEPS2018 ☐ LEPS2006 First photon-beam asymmetries data for $E_{\nu} > 2.4$ GeV. The asymmetries increase gradually as E_{γ} increases for both the reactions. K^* -exchange contribution becomes larger. M. Guidal et al./Nuclear Physics A 627 (1997) 645-678 SLAC data (1979) 21 #### New data with higher statistics are analyzed now We will be able to provide more precise data in the near future. # (3) $\vec{\gamma} p \rightarrow \pi^- \Delta^{++}$ reaction ## uu production Title : Differential cross section and photon-beam asymmetry for the γ p -> $\pi^- \Delta^{++}(1232)$ reaction at forward π^- angles for E_{γ} =1.5-2.95 GeV Authors: H. Kohri, S.H. Shiu, W.C. Chang, Y. Yanai, et al. LEPS Collaboration Published in Phys. Rev. Lett. 120 202004 (2018) on the 18th of May. # Missing mass $p(\gamma, \pi^-)X$ Missing mass is fitted with relativistic Breit-Wigner shape for Δ , 2π / ρ , 3π , and e^- curves. #### **Comparison of d\sigma/dcos\theta between \pi^-\Delta^{++}(\bullet) and \pi^+ n(\blacksquare)** Strong forward peaking cross sections suggest t-channel reaction is dominant. # Differential cross sections for $\gamma p \rightarrow \pi^- \Delta^{++}$ First high-statistics cross section data. $d\sigma/d\cos\theta$ decreases as E_{γ} increases. Strong forward peaking (π -exchange). Theoretical calculations by S.i. Nam well reproduce the data. The energy dependence of $E_{\gamma} < 1.8$ GeV cannot be reproduced for $\cos \theta > 0.9$. N^* or Δ^* ? - LEPS - O SAPHIR2005 - **\(\DESY1968 \)** - LAMP2 1980 - **SLAC1972** #### **SAPHIR** total cross sections C. Wu et al. Eur. Phys. J. A 23 (2005) 317 ### Photon-beam asymmetry for γ p -> $\pi^-\Delta^{++}$ First asymmetry data for $1.5 < E_{\gamma} < 2.8$ GeV. Asymmetries are found to be negative for most of LEPS kinematical regions, suggesting π -exchange dominance. Theoretical calculations by S.i. Nam well reproduce negative asymmetries for $\cos \theta > 0.933$. The calculations cannot reproduce the data for $\cos \theta < 0.9$. Additional unnatural parity exchange is needed. - LEPS - **SLAC1972** # (4) $\vec{\gamma} p \rightarrow \pi^+ \Delta^0$ reaction $d\bar{d}$ production Missing mass is fitted with relativistic Breit-Wigner shape for Δ , $2\pi/\rho$, 3π , and e^- or e^+ curves. ## Comparison between uu and dd productions uū production is precisely compared with dd production by the $\gamma p \rightarrow \pi^- \Delta^{++}$ and $\pi^+ \Delta^0$ reactions I expect this comparison would give important information to understand how hadrons are produced. #### Expected cross section ratio $\sigma(\pi^+\Delta^0)/\sigma(\pi^-\Delta^{++})$ s- channel #### t- channel #### Ratio $\sigma(\pi^+\Delta^0)/\sigma(\pi^-\Delta^{++})$ E_γ (GeV) (dd production / uu production) # Photon beam asymmetry for γ p -> $\pi^-\Delta^{++}$ and γ p -> $\pi^+\Delta^0$ reactions # Summary and future plan We took high momentum charged pion data for the first time. It enables us to study $u\bar{u}$, $d\bar{d}$, and $s\bar{s}$ productions and we want to obtain unified understanding of these $q\bar{q}$ productions. (1) $\gamma p \rightarrow \pi^+ n$ reaction data dd production - Published in Phys. Rev. C on Jan/22/2018 - (2) γ p -> K⁺ Λ and K⁺ Σ^0 reaction data $s\overline{s}$ production - Published in Phys. Rev. C on Jan/31/2018 New data are analyzed now. (3) γ p -> $\pi^- \Delta^{++}$ reaction data uu production Published in Phys. Rev. Lett. on May/18/2018 (4) γ p -> π^+ Δ^0 reaction data. $\frac{1}{dd}$ production Physics paper is prepared. # Refrigerators for polarized HD target Osaka RCNP DRS Osaka RCNP TC1 RCNP -> SPring-8 SC SPring-8 T=4KB = 0.2T T=2KB=1T B=17 T T=4K B=0.2T SPring-8 **IBC** T=300mK B=1 T ## Status of polarized HD target - We are developing a polarized HD target for the near future LEPS experiments using polarized photons and HD targets. We will be able to obtain much more information to understand hadron photoproduction. - The polarization of H is 44+-1% and the relaxation time of the H polarization is 8+-2 months. These performances are good enough for physics runs. - We need skills to transport the HD target from the first cryostat to the last one. - After acquiring these skills, we will start the physics runs. - Previously, SPring-8-II(8 GeV -> 6 GeV) planed to start in 2020. But the schedule is largely delayed. - We still have some years for taking physics data with HD. 36 # Thank you