Measurement of $\pi^0\pi^{\pm/-}$ Photoproduction off the Deuteron and d-Butanol targets

NSTAR 2019, Bonn

Debdeep Ghosal

University of Basel– Krusche Group

debdeep.ghosal@unibas.ch

June 11th, '19
Overview

- Introduction and Motivation for Photoproduction
- Motivation for Photoproduction with $\pi^0\pi^{+/-}$
- Experimental Setup
- Analysis
- Preliminary Results
- Summary and Outlook
- References
✓ An efficient tool for the study of decays of nucleon resonances
✓ Excitation spectrum of hadrons → the underlying symmetries and the internal degrees of freedom
Photoproduction of pion pairs off nuclei

- insight into low energy QCD (large \(\alpha \))
- in medium resonances of nucleons
- Baryons could have less internal degrees of freedom than predicted in quark models
- possibilities of more complex baryonic structures (e.g. pentaquarks etc.)
Motivation for Photoproduction with $\pi^0\pi^{+/-}$

For nucleon resonances the effective degrees of freedom are not well understood and many more states have been predicted than observed. [larger mass region of the spectrum]
Motivation for Photoproduction with $\pi^0\pi^+/\pi^-$

- Higher lying resonances have tendency of cascade-like decays with an intermediate state \rightarrow double pion production interesting.
- Special interests in $\pi^0\pi^+/\pi^-$ include also contributions from ρ meson (forbidden in $\pi^0\pi^0$)
- Influence of ρ on 2nd resonance peak \rightarrow study with proton, deuteron, 4He and heavier targets
Experimental Setup of A2 Mainz

Crystal Ball experiment

- TAPS
- BaF$_2$
- Veto
- PID
- target
- NaI(Tl)
- CB
Experimental Setup of A2 Mainz

Crystal Ball experiment

Figure: Schematic overview of the Exp. Setup

Debdeep Ghosal (University of Basel)
@NSTAR, Bonn
June 11th, '19
Experimental Setup of A2 Mainz

Figure: Schematic overview of the Exp. Setup
Parameters for Data taking with Unpolarized and Polarized targets

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unpolarized target</th>
<th>Polarized target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target type</td>
<td>Liq Deuterium[$L D_2$]</td>
<td>dButanol</td>
</tr>
<tr>
<td>Target length[cm]</td>
<td>3.02</td>
<td>1.88</td>
</tr>
<tr>
<td>Multiplicity trigger</td>
<td>M2+</td>
<td>M2+</td>
</tr>
<tr>
<td>Photon tagger range[MeV]</td>
<td>400 to 1400</td>
<td>400 to 1400</td>
</tr>
<tr>
<td>Radiator</td>
<td>Moeller</td>
<td>Moeller</td>
</tr>
<tr>
<td>e^- beam energy[MeV]</td>
<td>1575.5 MeV</td>
<td>1557 MeV</td>
</tr>
</tbody>
</table>

Table: Parameters for deuterium(May 2009) and dButanol(Dec 2015) beamtimes
Investigated reactions of baryon spectrum: NN, πN and γN (limited extent)
About the Interested Channels

Interested Amplitudes:
Interested Amplitudes:

\(\gamma p(n) \rightarrow \pi^+\pi^0n(n) \)
\(\rightarrow 4 \) channels:
- via \(\Delta^+ \rightarrow \pi^+n \)
- via \(\Delta^0 \rightarrow \pi^0n \)
- via \(\rho^+ \rightarrow \pi^+\pi^0 \)

\(\gamma n(p) \rightarrow \pi^-\pi^0p(p) \)
\(\rightarrow 4 \) channels:
- via \(\Delta^0 \rightarrow \pi^-p \)
- via \(\Delta^+ \rightarrow \pi^0p \)
- via \(\rho^- \rightarrow \pi^-\pi^0 \)

\(\gamma p(n) \rightarrow \pi^+\pi^0n(n) \)
\(\rightarrow \) detected particles:
- 1 charged:
 - \(\pi^+ \)
- 3 uncharged:
 - \(\pi^0 \rightarrow \gamma\gamma \) (98.823 %)
 - neutron participant

\(\gamma n(p) \rightarrow \pi^-\pi^0p(p) \)
\(\rightarrow \) detected particles:
- 2 charged:
 - \(\pi^- \)
 - proton participant
- 2 uncharged:
 - \(\pi^0 \rightarrow \gamma\gamma \) (98.823 %)

Further selection of events necessary through cuts and corrections
Various Cuts for event selection:

- Charged particle identification via energy left in PID versus energy in CB ("dE-E cut")
- Invariant mass of the π^0 reconstructed from $\gamma\gamma$ in case of three neutral particles, get neutron candidate via χ^2 test
- Missing mass of either a charged π^+/π^- or the proton
- Coplanarity of the final state (ϕ-angle between the π^+/π^-/π^0 system and the participant nucleon)
Various Cuts for event selection:

- charged particle identification via energy left in PID versus energy in CB (''dE-E cut'')
- invariant mass of the π^0 reconstructed from $\gamma\gamma$ in case of three neutral particles, get neutron candidate via χ^2 test
- missing mass of either a charged $\pi^+/-\pi^0$ or the proton
- coplanarity of the final state (ϕ-angle between the $\pi^+/-\pi^0$ system and the participant nucleon)
Various Cuts for event selection:

- charged particle identification via energy left in PID versus energy in CB ("dE-E cut")
- invariant mass of the π^0 reconstructed from $\gamma\gamma$ in case of three neutral particles, get neutron candidate via χ^2 test
- missing mass of either a charged $\pi^+/-$ or the proton
- coplanarity of the final state (ϕ-angle between the $\pi^+/−\pi^0$ system and the participant nucleon)
Special Corrections on MC data

- Nucleon Detection Efficiency

[to compensate for imperfections in the implementation of the experimental setup in GEANT and inefficiencies in the PID and the TAPS vetoes]
Special Corrections on MC data

- **Nucleon Detection Efficiency**

 to compensate for imperfections in the implementation of the experimental setup in GEANT and inefficiencies in the PID and the TAPS vetoes

- **CB Energy sum correction/CDF**

 The energy-sum trigger checks the sum of the deposited energies of the particles in CB against a threshold value
Special Corrections on MC data

- **Nucleon Detection Efficiency**

 to compensate for imperfections in the implementation of the experimental setup in GEANT and inefficiencies in the PID and the TAPS vetoes

- **CB Energy sum correction/CDF**

 The energy-sum trigger checks the sum of the deposited energies of the particles in CB against a threshold value

- **Gap correction**

 acceptance hole between the CB and TAPS, where no particles are detected
Analysis
Calculating Cross sections

- apply all cuts and corrections to data
apply all cuts and corrections to data
retrieve photon flux from tagger channels
Analysis
Calculating Cross sections

- apply all cuts and corrections to data
- retrieve photon flux from tagger channels
- generate MC data for channels with Geant4 simulation
Analysis
Calculating Cross sections

- apply all cuts and corrections to data
- retrieve photon flux from tagger channels
- generate MC data for channels with Geant4 simulation
- apply all the cuts and corrections to MC data
Analysis

Calculating Cross sections

- apply all cuts and corrections to data
- retrieve photon flux from tagger channels
- generate MC data for channels with Geant4 simulation
- apply all the cuts and corrections to MC data
- divide data yield by the efficiency
Preliminary Results

Total Cross section comparison for LD_2 target [May’09 beamtime]

Figure: For reaction with final state $\pi^0\pi^+n$
Comparison of detection efficiency for the respective channels with d-Butanol targets

Efficiency comparison for E_γ:
- Det. Eff with d-Butanol for $\gamma n \rightarrow \pi^-$
- Det. Eff with d-Butanol for $\gamma p \rightarrow \pi^+$

Efficiency comparison for W:
- Det. Eff with d-Butanol for $\gamma n \rightarrow \pi^-$
- Det. Eff with d-Butanol for $\gamma p \rightarrow \pi^+$
E-observable extraction
Asymmetry between the two helicity states

E-observable determines the contribution from $\sigma_{1/2}$ and $\sigma_{3/2}$ components

where, $\sigma_{1/2}$: photon-spin \perp target-spin
and $\sigma_{3/2}$: photon-spin \parallel target-spin

- Circularly polarized photon beam impinging on a longitudinally polarized nucleon target

- **V1 (Carbon subtraction method):** to determine the carbon and oxygen contributions to the dButanol
- **V2 (Direct method):** extract tot. CS from dButanol beamtime \rightarrow to be normalized using $2 \times$ unpolarized CS.
Calculation of E-observable and the two helicity state cross sections

\[
\begin{array}{c|c}
\text{Version} & E \\
\hline
I & \frac{\sigma_\Delta}{\sigma_\Sigma} \\
II & \frac{\sigma_\Delta}{2\sigma_0} \\
\end{array}
\]

Table: Overview of the versions used to extract E

where,

\[
\sigma_\Sigma = \sigma_{1/2} + \sigma_{3/2}, \quad \sigma_\Delta = \sigma_{3/2} - \sigma_{1/2} \quad \text{and} \quad \sigma_0 = \text{unpol. x-sec.}
\]

\[
\begin{array}{c|cc}
\text{Version} & \sigma_{1/2} & \sigma_{3/2} \\
\hline
I & \sigma_0(1 + E) & \sigma_0(1 - E) \\
II & \frac{\sigma_\Sigma + \sigma_\Delta}{2} & \frac{\sigma_\Sigma - \sigma_\Delta}{2} \\
\end{array}
\]

Table: Overview of the versions used to extract the two helicity state cross section
Preliminary Results
Missing mass for difference and sum of the yields

Figure: ΔM for dButanol for the difference $N_{3/2} - N_{1/2}$, and the sum $N_{1/2} + N_{3/2}$ of the two helicity states for the reaction on the proton (blue) and the neutron (red).
Preliminary Results: E-observable extraction with dButanol target

Figure: Preliminary E-observable for reaction with final state $\gamma p \to \pi^0 \pi^+ n$

Figure: Preliminary E-observable for reaction with final state $\pi^0 \pi^- p$
Preliminary Results

Comparison plots of total cross sections between liq.deuterium and d-Butanol targets

Figure: For $\gamma p \rightarrow \pi^0 \pi^+ n$ channel

Figure: For $\gamma n \rightarrow \pi^0 \pi^- p$ channel
Preliminary Results

Comparison of Difference of the two helicity state cross sections $[\sigma_\Delta]$ with d-Butanol target

(a) For reaction with final state $\pi^0 \pi^+$

(b) For reaction with final state $\pi^0 \pi^-$

Debdeep Ghosal (University of Basel)
Two helicity state cross sections extracted with different versions [in terms of \(W \)]

Figure: For \(\gamma p \rightarrow \pi^0 \pi^+ n \) channel

Figure: For \(\gamma n \rightarrow \pi^0 \pi^- p \) channel
Summary:

- Preliminary cross sections for both mixed charged double pion production channels extracted
- Extraction of E-observable with direct and carbon subtracted methods
- Comparison of results from final analysis with previous data

Outlook:

- Further investigation on data from other d-Butanol beamtimes (e.g. Mar 15, May 16 etc.)
- Comparison with the Bn-Ga predicted model
Summary:

- Preliminary cross sections for both mixed charged double pion production channels extracted
- Extraction of E-observable with direct and carbon subtracted methods
- Comparison of results from final analysis with previous data

Outlook:

- Further investigation on data from other d-Butanol beamtimes (e.g. Mar’15, May’16 etc.)
- Comparison with the Bn-Ga predicted model
F. Zehr and B. et al. Krusche. Photoproduction of $\pi_0\pi^-$ and $\pi_0\pi^+$ pairs off the proton from threshold to the second resonance region. The European Physical Journal A, 48(7):98, 2012. ISSN 1434-6001. doi: 10.1140/epja/i2012-12098-1.

https://jazz.physik.unibas.ch/site/talks/Abt_DPG_17_03_talk.pdf

https://edoc.unibas.ch/39089/1/Lilian_Witthauer.pdf

THANK YOU
backup
Various Cuts for event selection:

- charged particle identification via energy left in PID versus energy in CB ("dE-E cut")
Various Cuts for event selection:

- charged particle identification via energy left in PID versus energy in CB ("dE-E cut")
- invariant mass of the π^0 reconstructed from $\gamma\gamma$ in case of three neutral particles, get neutron candidate via χ^2 test
Various Cuts for event selection:

- charged particle identification via energy left in PID versus energy in CB ("dE-E cut")
- invariant mass of the π^0 reconstructed from $\gamma\gamma$ in case of three neutral particles, get neutron candidate via χ^2 test
- missing mass of either a charged $\pi^+/-$ or the proton
Various Cuts for event selection:

- charged particle identification via energy left in PID versus energy in CB ("dE-E cut")
- invariant mass of the π^0 reconstructed from $\gamma\gamma$ in case of three neutral particles, get neutron candidate via χ^2 test
- missing mass of either a charged $\pi^+/-$ or the proton
- coplanarity of the final state (ϕ-angle between the $\pi^+/-$ π^0 system and the participant nucleon)
Analysis
Background Rejection

Various Cuts for event selection:

- charged particle identification via energy left in PID versus energy in CB (”dE-E cut”)
- invariant mass of the π^0 reconstructed from $\gamma \gamma$ in case of three neutral particles, get neutron candidate via χ^2 test
- missing mass of either a charged π^+/π^- or the proton
- coplanarity of the final state (ϕ-angle between the $\pi^+/\pi^-\pi^0$ system and the participant nucleon)

![Diagram](image.png)

Meson candidate (red) and recoil nucleon (blue) lie in the reaction plane, separated by azi. $\delta \varphi = 180^\circ$.
Analysis-Result

dE-E Proton exclusion and selection cut

Proton and Charged Pion identification with PID and CB

(a) For π^+ channel: pion

(b) For π^- channel: pion and proton

Figure: Identification of charged particle
Preliminary Results

Total Cross section comparison for LD$_2$ target [May’09 beamtime]

(a) For reaction with final state $\pi^0\pi^+$

(b) Influence of the CB energy sum & Gap correction on total Cross section for $\pi^0\pi^-p$ final state
Preliminary Results

Figure: Influence of the CB energy sum correction on total Cross section for $\pi^0\pi^-p$ final state
Figure: ΔM for dButanol for the difference $N_{1/2} - N_{3/2}$, and the sum $N_{1/2} + N_{3/2}$ of the two helicity states for the reaction on the proton (blue) and the neutron (red). The line shape of the simulation is shown as black line. The influence of the carbon is clearly visible in the sum, whereas for the difference, the simulation and the experimental data are in agreement.
\[m_{n[\text{part.}]} = \sqrt{(p_{\text{beam}}^4 + p_{\text{target}}^4 - p_{\pi^+}^4 - p_{\pi^0}^4)^2} \]

where,

- \(p_{\text{beam}}^4 = (0,0,E_\gamma, E_\gamma) \) incoming tagged photon
- \(p_{\text{target}}^4 = (0,0,0,m_{p[\text{part.}]}) \) participant proton initially assumed at rest (fermi momentum smearing increases inaccuracy of this assumption)
- \(p_{\pi^+}^4 \) and \(p_{\pi^0}^4 \) measured final state pions (accurate for \(p_{\pi^0}^4 \) and with slight correction factor for low energy \(p_{\pi^+}^4 \))
- \(m_{n[\text{part.}]} = \) mass of the final state participant neutron
- spectator omitted from this calculation (assumed \(p_{n[\text{spec.}]}^4(\text{initial}) = p_{n[\text{spec.}]}^4(\text{final}) \))
Background Rejection

Coplanarity cut—

Meson candidate (red) and recoil nucleon (blue) lie in the reaction plane, separated by azi. $\delta \phi = 180^\circ$.

Missing mass cut—

Mass M of the nucleon can be calculated from the initial state and the detected final state particles, assuming that the nucleon in the initial state is at rest:

$$M = \sqrt{(E_\gamma + m_N - E_\eta)^2 - (\vec{p}_\gamma - \vec{p}_\eta)^2},$$

where E_γ and \vec{p}_γ are energy and momentum of the incident photon beam, E_η and \vec{p}_η are the energy and momentum of the η meson, and m_N is the nucleon mass. With a correct identification of the reaction, the corresponding spectra should have a clear peak at the nucleon mass m_N. Thus, the nucleon mass was directly subtracted to get the missing mass:

$$\Delta M = M - m_N.$$
Corrections

software trigger [cdf/CB energy sum]: The CB energy sum trigger is checking the total sum of the analog signals of all NaI(Tl) crystals against a threshold, which corresponds to a certain energy. Photon energy sum depends on the energy and angular distribution of the -meson and thus a certain model dependence is introduced.
nucleon detection efficiency correction: The PID detector was shifted upstream during the December 2007 beamtime and to ensure a clean discrimination of protons and neutrons, a strict cut on the nucleon polar angle was applied in the data analysis. The corrections described here were determined for deuterium beamtime by setting the same detector thresholds in the hydrogen analysis and the corresponding deuterium analysis. This is most crucial for the PID and Veto thresholds that have a strong influence on the proton detection efficiency, and the TAPS CFD thresholds, which are important for the detection of neutrons.
Example of mm-fit for C-subtraction method

![Graphs showing data for different energy levels: $E_\gamma = 650$ MeV.](image)