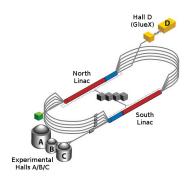
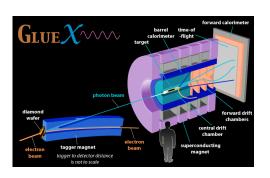
Studying Isospin breaking and anomalous η/η' -Decay Modes in Photoproduction with GlueX

Daniel Lersch

(For the GlueX Collaboration)


Florida State University

13.06.2019

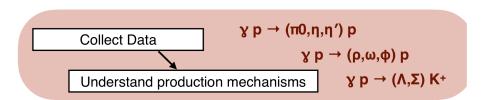


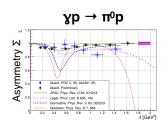
The **Gl**uonic **eX**citations (**GlueX**) Experiment at Thomas Jefferson National Laboratory

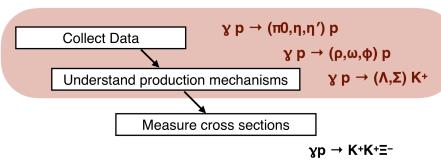
Experimental Hall D:

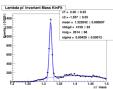
- Over 125 scientists from:
 - 28 Institutions
 - 10 Countries
- Experiments with polarized photon beam

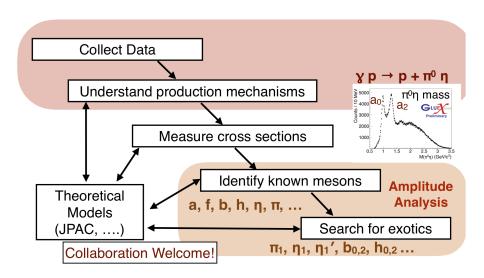
 ${f ilde{\hspace{-0.05cm} ilde{\hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} {
m ilde{\hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.05cm} {
m ilde{\hspace{-0.05cm} \hspace{-0.05cm} \hspace{-0.0$

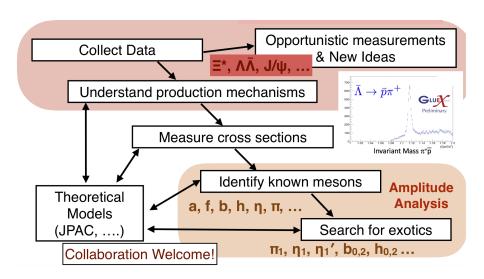

Run Period	Luminosity $[pb^{-1}]$
2016	2
2017	21
2018	80


 \square **Phase II:** High intensity + DIRC upgrade \rightarrow Start in fall this year

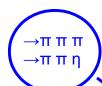

Diagram taken from Sean Dobbs


Collect Data


3 / 13







$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \rightarrow \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \rightarrow \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \rightarrow \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \rightarrow \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \rightarrow \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \rightarrow \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \rightarrow \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\$

HADRONIC:

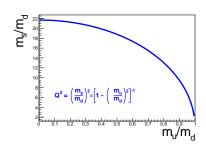
- Isospin Violation
- Quark Mass Ratio

Zun?

RADIATIVE:

- Quantum Anomalies
- FSI

SEMI-LEPTONIC:


- Transition Form Factors
- CP-Violation

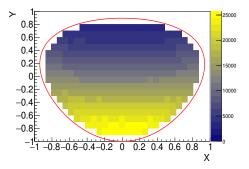
$\left[\eta ightarrow \pi^+\pi^-\pi^0 ight]$ Decay Properties

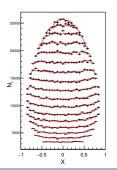
System	Isospin $ I,I_z\rangle$	C-Eigenvalue	G-Eigenvalue
η	0,0⟩	+1	+1
$(\pi^{+}\pi^{-}\pi^{0})$	0,0⟩	-1	-1
$(\pi^{+}\pi^{-}\pi^{0})$	0,0⟩	+1	-1

- Decay $\eta \to \pi^+\pi^-\pi^0$ is...
 - ... G-violating
 - ... C-conserving \Leftrightarrow Isospin breaking
- Determine quark mass ratio by measuring decay width: $\Gamma(\eta \to \pi^+\pi^-\pi^0) \propto Q^{-4}$

- \Rightarrow Experimental access to Γ :
 - i) Relative branching fraction: e.g. $\Gamma(\eta \to \pi^+\pi^-\pi^0)/\Gamma(\eta \to \gamma\gamma)$
 - ii) Dalitz Plot analysis

$\eta o \pi^+\pi^-\pi^0$ Dalitz Plot Analysis


• Parameterize decay width Γ:

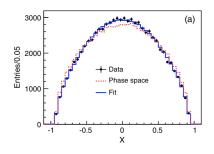

$$rac{d^2\Gamma}{dXdY} \propto \left(1+aY+bY^2+cX+dX^2+eXY+fY^3+gX^2Y+\cdots
ight)$$

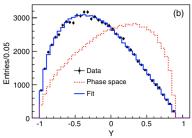
With dimensionless variables:

$$X=\sqrt{3}(T_{\pi^+}-T_{\pi^-})/\Sigma_T o$$
 Sensitive to charge conjugation $Y=3T_{\pi^0}/\Sigma_T-1$

- Results from KLOE: KLOE coll., JHEP, 019, (2016)
- i) η -Mesons produced via: $e^+e^- o \Phi o \eta \gamma$
- ii) $\approx 4.7 \,\mathrm{M}~\eta \to \pi^+\pi^-\pi^0$ events

$\overline{\eta o \pi^+\pi^-\pi^0}$ Dalitz Plot Analysis


• Parameterize decay width Γ:

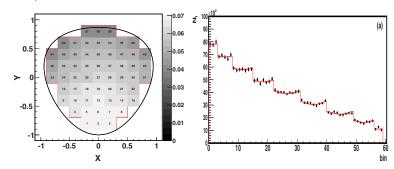

$$\frac{d^2\Gamma}{dXdY} \propto \left(1+aY+bY^2+cX+dX^2+eXY+fY^3+gX^2Y+\cdots
ight)$$

• With dimensionless variables:

$$X=\sqrt{3}(T_{\pi^+}-T_{\pi^-})/\Sigma_T o$$
 Sensitive to charge conjugation $Y=3T_{\pi^0}/\Sigma_T-1$

- Results from BESIII: BESIII, Phys. Rev., D92(012014), (2015)
- i) η -Mesons produced via: $e^+e^- \to J/\psi \to \eta\gamma$
- ii) $\approx 80 \,\mathrm{k} \, \eta \to \pi^+ \pi^- \pi^0$ events

$\eta o \pi^+\pi^-\pi^0$ Dalitz Plot Analysis


• Parameterize decay width Γ:

$$\frac{d^2\Gamma}{dXdY} \propto \left(1 + aY + bY^2 + cX + dX^2 + eXY + fY^3 + gX^2Y + \cdots\right)$$

• With dimensionless variables:

$$X=\sqrt{3}(T_{\pi^+}-T_{\pi^-})/\Sigma_T o$$
 Sensitive to charge conjugation $Y=3T_{\pi^0}/\Sigma_T-1$

- Results from WASA-at-COSY: WASA-at-COSY coll., Phys. Rev., C90(045207), (2014)
- i) η -Mesons produced via: $pd \rightarrow {}^{3}{\rm He}\eta$
- ii) $\approx 170 \,\mathrm{k} \,\, \eta \to \pi^+ \pi^- \pi^0$ events

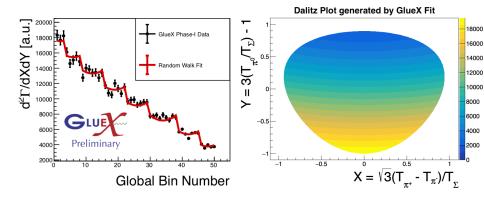
F	Parameter:	— a	b	d	f
Exp.	KLOE(08) ^(a)	1.090(5)(+8 / -19)	0.124(6)(10)	$0.057(6)(^{+7}_{-16})$	0.14(1)(2)
ú	WASA ^(b)	1.144(18)	0.219(19)(47)	0.086(18)(15)	0.115(37)
	BESIII ^(c)	1.128(15)(8)	0.153(17)(4)	0.085(16)(9)	0.173(28)(21)
	KLOE(16) ^(d)	1.104(3)(2)	$0.142(6)(^{5}_{-4})$	$0.073(3)(^{+4}_{-3})$	$0.154(6)(^{+4}_{-5})$
Theo.	PWA ^(e)	1.116(32)	0.188(12)	0.063(4)	0.091(3)
누	PWA ^(f)	1.077(29)	0.170(8)	0.060(2)	0.091(3)
	KT ^(g)	1.142(45)	0.172(16)	0.097(13)	0.122(16)

(a) KLOE coll., JHEP, 05, (2008)

(b) WASA-at-COSY coll., Phys. Rev., C90(045207), (2014)

(c) BESIII, Phys. Rev., D92(012014), (2015)

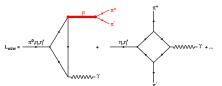
(e) Peng Guo et al., Phys. Rev., D92(05016), (2015) (f) Peng Guo et al., Phys. Lett., B771(497-502), (2017)


(d) KLOE coll., JHEP, 019, (2016)

(g) M.Albaladejo and B. Moussallam, Eur. Phys. J., C, (2017)

• Partial wave analysis performed by JPAC: WASA-at-COSY: $Q = 21.4 \pm 1.1^{(e)}$ (~ 120 k events) KLOE: $Q = 21.7 \pm 1.1^{(g)}$ ($\sim 4.7 \cdot 10^6$ events)

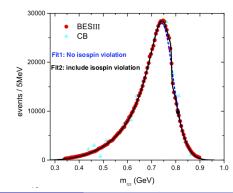
- CLAS6 Dalitz Plot analysis on g12 data ongoing
- Perform Dalitz Plot Analysis with GlueX-I Data
 - 1.) $\eta \rightarrow \pi^+\pi^-\pi^0$
 - 2.) $\eta' \to \pi^{+}\pi^{-}\eta$


$\left(\eta ightarrow \pi^+\pi^-\pi^0 ight)$ Status GlueX-I Data Analysis

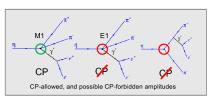
- ullet $pprox 300\,\mathrm{k}~\eta o \pi^+\pi^-\pi^0$ events reconstructed in 20% of GlueX Phase-I data
 - ▶ Found consistency with previous measurements
 - ▶ No asymmetries in Dalitz Plot observed
 - Checks for systematic uncertainties ongoing
- Dalitz Plot analysis for remaining GlueX Phase-I data ongoing

Daniel Lersch (FSU)

$\eta^{(\prime)} ightarrow \pi^+\pi^-e^+e^-ig)$ Box Anomaly, FSI and CP-Violation



Underlying decay: $\eta^{(\prime)} \to \pi^+\pi^-\gamma$

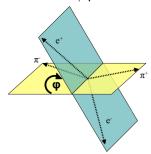

- Wess-Zumino-Witten-Lagrangian $+ \pi\pi$ -FSI
- CP-Conserving for M_1 and E_2 photon transitions
- Study $M(\pi^+, \pi^-)$ -Distribution:
 - Determine contributions from box anomaly term
 - ii) Insights into $\pi\pi$ -FSI
- Amplitude analysis for decay: $\eta' \to \pi^+\pi^-\gamma$

Ling-Yun Dai et al., Phys. Rev. D97(036012),(2018)

Amplitude/Resonance	[keV]	
$ \frac{\eta' \to \rho \gamma \to \pi^+ \pi^- \gamma}{\text{Box Anomaly}} $ $ \eta' \to \omega \gamma \to \pi^+ \pi^- \gamma $		

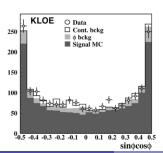
$$\eta^{(\prime)}
ightarrow \pi^+\pi^-e^+e^- ig)$$
 Box Anomaly, FSI and **CP-Violation**

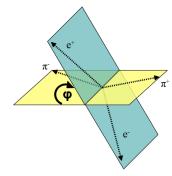
Underlying decay: $\eta^{(\prime)} \rightarrow \pi^+\pi^-\gamma$

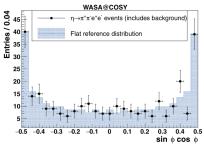

- Wess-Zumino-Witten-Lagrangian $+ \pi\pi$ -FSI
- CP-Conserving for M_1 and E_2 photon transitions
- Access to CP-violation \rightarrow Need information about γ polarization

Virtual case: $\eta^{(\prime)} \to \pi^+\pi^-\gamma^*$

- Where: $\gamma^* \rightarrow e^+e^ \Rightarrow$ suppressed by $\approx \alpha$
- Polarization encoded in pion-lepton decay planes

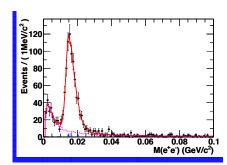

Illustration on the bottom right taken from:


WASA-at-COSY coll. Phys. Rev. C.94 .065206 (2016)



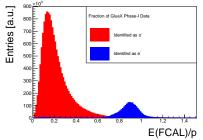
$\eta ightarrow \pi^+\pi^-e^+e^-$ Asymmetry

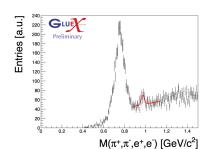
- $A_{\Phi} = \frac{N(\sin[\Phi]\cos[\Phi]>0) N(\sin[\Phi]\cos[\Phi]<0)}{N(\sin[\Phi]\cos[\Phi]>0) + N(\sin[\Phi]\cos[\Phi]<0)}$
- Measuring A_{Φ} reveals information about CP-violating transitions
- Upper limit predicted by theory $^{(a)}$: $\sim 1\%$ (a) D. Gao. *Mod. Phys. Lett.*, A17:1583-1588,(2002)
- ullet Measurements of A_{Φ} performed by WASA-at-COSY and KLOE



$\eta^{(\prime)} ightarrow \pi^+\pi^-e^+e^- ig)$ Asymmetry and Branching Fraction

Experiment	X	$\frac{\Gamma(X \to \pi^+ \pi^- e^+ e^-)}{\Gamma_X} [10^{-4}]$	A_{Φ} [10 ⁻²]	#Events [k]
WASA (b)	η	$2.7 \pm 0.2_{stat} \pm 0.2_{sys}$	$-1.1\pm6.6_{ extit{stat}}\pm0.2_{ extit{sys}}$	0.215
KLOE (c)	η	$2.68 \pm 0.09_{stat} \pm 0.07_{sys}$	$-0.6\pm2.5_{\it stat}\pm1.8_{\it sys}$	1.6
BESIII (d)	η'	$21.1\pm1.2_{\it stat}\pm1.5_{\it sys}$	n/a	0.429


- (b) WASA-at-COSY coll. Phys. Rev.C,94 ,065206 (2016)
- (c) KLOE coll. Phys. Lett.B,675 ,283-288 (2009)
- (d) BESIII coll. Chinese Phys. C 42, 04202 (2108)


- Shown on the right: BESIII $^{(d)}$ analysis of $\eta' \to \pi^+\pi^-e^+e^-$
- Main background contribution: $\eta' \to \pi^+ \pi^- \gamma$ at $M(e^+, e^-) \approx 0.015 \, {\rm GeV}$

$\eta^{(\prime)} ightarrow \pi^+\pi^-e^+e^-ig)$ Plans and Analysis Strategy for GlueX-I

- Want to measure/study:
 - i) Branching fraction
 - ii) $M(\pi^+, \pi^-)$ and $M(e^+, e^-)$
 - iii) A_{Φ}
- PID is crucial part of analysis:
 - Utilize machine learning to identify particles within detector
 - ► Combine information into Bayesian probability
- Analyzed subsample of the GlueX Phase-I data:
 - Reconstructed \sim 120 $\eta' \to \pi^+\pi^-e^+e^-$ event candidates
 - Main background contributions from: ρ^0 , ω , K_S and $\eta' \to \pi^+\pi^-\gamma$

Daniel Lersch (FSU)

N* Bonn (2019)

13.06.2019

Summary and Outlook

1. Dalitz Plot Analysis for $\eta \to \pi^+\pi^-\pi^0$:

- \blacktriangleright Reconstructed $\sim 300\,\mathrm{k}$ events in 20% of GlueX Phase-I data
- ▶ Dalitz Plot distribution shows no C-violating asymmetries
 ⇒ Uniform reconstruction efficiency
- Analysis of remaining data ongoing
- Estimation of systematic uncertainties and parameter extraction on the way
- Expected statistics after analyzing total GlueX Phase-I data comparable with KLOE

2. Anomalous Decay $\eta^{(\prime)} \to \pi^+\pi^-e^+e^-$:

- lacktriangle Reconstructed \sim 120 η' event candidates in subsample of GlueX Phase-I data
- ► Electron identification important for analysis:
 - i) Suppression of π^{\pm} background
 - ii) Calculation of asymmetry A_{Φ}
- Analysis of remaining data set is ongoing
- Expected to have at least statistics as current BESIII result

Content

1. General

- 1.1 GlueX at Thomas Jefferson National Laboratory (2)
- 1.2 Physics Roadmap (3)
- 1.3 $\eta/\eta^{(\prime)}$ Decays (4)
- 2. $\eta
 ightarrow \pi^+\pi^-\pi^0$
 - 2.1 Decay Dynamics (5)
 - 2.2 Dalitz Plot Analysis (6)
 - 2.3 Recent results (7)
 - 2.4 Status GlueX-I Data Analysis (8)
- 3. $\eta^{(\prime)} \to \pi^+ \pi^- e^+ e^-$
 - 3.1 Box Anomaly, FSI and CP-Violation (9)
 - 3.2 Asymmetry (10)
 - 3.3 Asymmetry and Branching Fraction (11)
 - 3.4 Plans and Analysis Strategy for GlueX-I (12)
- 4. Summary and Outlook (13)