

Nucleon resonances in Compton scattering

Gernot Eichmann

IST Lisboa, Portugal

NSTAR 2019 Bonn, Germany

June 12, 2019

Extraction of resonances?

Electromagnetic transition form factors

Extraction of resonances?

Sato-Lee/EBAC/ANL-Osaka, Dubna-Mainz-Taiwan, Valencia, Jülich-Bonn, GSI. JLab, MAID, SAID, KSU, Giessen, Bonn-Gatchina, JPAC....

Extraction of resonances?

- Lorentz invariance?
- Em. gauge invariance?
- EFT ← QCD?
- What is an "offshell hadron"?

Compton scattering

Structure functions & PDFs in forward limit

Handbag dominance & GPDs in DVCS

TPE corrections to form factors

Guichon, Vanderhaeghen, PRL 91 (2003)

Proton radius puzzle?

Antonigni et al., 2013, Pohl et al. 2013, Birse, McGovern 2012, Carlson 2015

Nucleon polarizabilities

Hagelstein, Miskimen, Pascalutsa, Prog. Part. Nucl. Phys. 88 (2016)

Resonances!

Compton scattering

Compton amplitude = sum of Born terms + 1PI structure part:

Compton scattering

- Lorentz invariance
- . Crossing symmetry
- Em. gauge invariance
- Chiral symmetry
- Perturbative QCD included
- s, t, u channel poles dynamically generated, no offshell hadrons inside - only quarks & gluons

But: consistency important, simple approximations can be dangerous → **challenge**

Meson electroproduction

- Lorentz invariance
- . Crossing symmetry
- Em. gauge invariance
- · Chiral symmetry
- Perturbative QCD included
- s, t, u channel poles dynamically generated, no offshell hadrons inside - only quarks & gluons

But: consistency important, simple approximations can be dangerous → **challenge**

Baryons with functional methods

Review: GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016), 1606.09602

- → see **Christian Fischer's** plenary Thursday morning
- → talks by Craig Roberts, José Rodriguez-Quintero, Chen Chen

GE, Ramalho, PRD 98 (2018)

Need em. transition FFs

But vertices are half offshell: need 'consistent couplings' Pascalutsa. Timmermans. PRC 60 (1999)

- em gauge invariance: $Q^{\mu} \Gamma^{\alpha\mu} = 0$
- spin-3/2 gauge invariance: $k^{\alpha} \Gamma^{\alpha\mu} = 0$
- invariance under point transformations: $\gamma^{\alpha}\,\Gamma^{\alpha\mu}=0$
- no kinematic dependencies, "minimal" basis

$J^P = \frac{1}{2}^+$	$\frac{3}{2}^{+}$	$\frac{1}{2}$	3 -
N(940)	N(1720)	N(1535)	N(1520)
N(1440)	N(1900)	N(1650)	N(1700)
N(1710)		N(1895)	N(1875)
N(1880)			
$\Delta(1910)$	$\Delta(1232)$	$\Delta(1620)$	$\Delta(1700)$
	$\Delta(1600)$	$\Delta(1900)$	$\Delta(1940)$
	$\Lambda(1920)$		

E.g. Jones-Scadron current cannot be used offshell:

$$\begin{split} \Gamma^{\alpha\mu} &\sim \bar{u}^{\alpha}(k) \left[m^2 \lambda_{-} (G_M^* - G_E^*) \, \varepsilon_{kQ}^{\alpha\mu} \right. \\ &\left. - G_E^* \, \varepsilon_{kQ}^{\alpha\beta} \, \varepsilon_{kQ}^{\beta\mu} - \frac{1}{2} \, G_C^* \, Q^{\alpha} k^{\beta} t_{QQ}^{\beta\mu} \right] u(k') \end{split}$$

$$t_{AB}^{lphaeta} = A \cdot B \, \delta^{lphaeta} - B^{lpha} \, A^{eta}$$
 $arepsilon_{AB}^{lphaeta} = \gamma_5 \, arepsilon_{lphaeta\gamma\delta}^{lphaeta\gamma\delta} A^{\gamma} B^{\delta}$

Compton scattering

Tarrach, Nuovo Cim. A28 (1975) GE, Ramalho, PRD 98 (2018)

Meson electroproduction

GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016)

Nucleon-to-resonance transition currents

GE, Ramalho, PRD 98 (2018)

Light-by-light scattering?

GE, Fischer, Heupel, PRD 92 (2015)

... also n-point functions with quarks & gluons

$$\Gamma^{\mu\nu} \; = \; \sum_{i} \, c_{i} \, K_{i}^{\mu\nu} \; = \; \underbrace{\sum_{i} \, \mathbf{g}_{i} \, G_{i}^{\mu\nu}}_{\mathbf{G}} + \underbrace{\sum_{j} \, \mathbf{f}_{j} \, X_{j}^{\mu\nu}}_{\mathbf{T}} \label{eq:Gamma_problem}$$

Minimal basis: neither g_i, f_j nor G_i, X_j become singular

Without minimal basis:

$$\Gamma^{\mu\nu} \; = \; \sum_{i} \, c_{i} \, K_{i}^{\mu\nu} \; = \; \underbrace{\sum_{i} \, \mathbf{g}_{i} \, G_{i}^{\mu\nu}}_{\mathbf{G}} + \underbrace{\sum_{j} \, \mathbf{f}_{j} \, X_{j}^{\mu\nu}}_{\mathbf{T}} \label{eq:Gamma_problem}$$

Minimal basis: neither g_i, f_j nor G_i, X_j become singular

Without minimal basis:

$$\Gamma^{\mu\nu} \; = \; \sum_{i} \, c_{i} \, K_{i}^{\mu\nu} \; = \; \underbrace{\sum_{i} \, \mathbf{g}_{i} \, G_{i}^{\mu\nu}}_{\mathbf{G}} + \underbrace{\sum_{j} \, \mathbf{f}_{j} \, X_{j}^{\mu\nu}}_{\mathbf{T}} \label{eq:eq:Gamma_problem}$$

Minimal basis: neither g_i, f_j nor G_i, X_j become singular

Without minimal basis:

$$\Gamma^{\mu\nu} \; = \; \sum_{i} \, c_{i} \, K_{i}^{\mu\nu} \; = \; \underbrace{\sum_{i} \, g_{i} \, G_{i}^{\mu\nu}}_{\rm G} + \underbrace{\sum_{j} \, f_{j} \, X_{j}^{\mu\nu}}_{\rm T} \label{eq:Gamma_problem}$$

Minimal basis: neither g_i, f_j nor G_i, X_j become singular

Without minimal basis:

With minimal basis:

no kinematic dependencies, only 'physical' poles and cuts!

$$\Gamma^{\mu
u} = \sum_i c_i K_i^{\mu
u} = \underbrace{\sum_i g_i G_i^{\mu
u}}_{\mathbf{G}} + \underbrace{\sum_j f_j X_j^{\mu
u}}_{\mathbf{T}}$$

Minimal basis: neither g_i, f_j nor G_i, X_j become singular

Transversality constraints:

$$Q^{\prime\mu} \Gamma^{\mu\nu} = 0$$

$$Q^{\nu} \Gamma^{\mu\nu} = 0$$

$$\Gamma^{\mu
u} = \sum\limits_{i} c_{i} K_{i}^{\mu
u} = \underbrace{\sum\limits_{i} g_{i} G_{i}^{\mu
u}}_{\mathbf{G}} + \underbrace{\sum\limits_{j} f_{j} X_{j}^{\mu
u}}_{\mathbf{T}}$$

Minimal basis: neither g_i, f_j nor G_i, X_j become singular

Transversality constraints:

$$Q^{\prime\mu} \Gamma^{\mu\nu} = 0 \qquad \Rightarrow \qquad Q^{\nu} \Gamma^{\mu\nu} = 0$$

Row-reduced echelon form:

$$\Gamma^{\mu\nu} \; = \; \sum_{i} \, c_{i} \, K_{i}^{\mu\nu} \; = \; \underbrace{\sum_{i} \, g_{i} \, G_{i}^{\mu\nu}}_{\rm G} + \underbrace{\sum_{j} \, f_{j} \, X_{j}^{\mu\nu}}_{\rm T} \label{eq:Gamma_spectrum}$$

Minimal basis: neither g_i, f_j nor G_i, X_j become singular

Transversality constraints:

$$Q^{\prime\mu} \Gamma^{\mu\nu} = 0$$

$$Q^{\nu} \Gamma^{\mu\nu} = 0$$

$$\Rightarrow$$

A minimal basis exists, if

- by swapping columns (= renaming basis tensors)
- adding / subtracting rows, multiplying rows with scalars (Gauss-Jordan elimination)

one can find a **row-reduced echelon form**where ::::: is nonsingular in any kinematic limit

 k^2 , Q^2 , $w = k \cdot Q$

$$\begin{split} \Gamma^\mu(k,Q) &= c_1\,k^\mu + c_2\,Q^\mu \\ \overline{\Gamma}^\mu(k,Q) &:= \Gamma^\mu(-k,-Q) \stackrel{!}{=} -\Gamma^\mu(k,-Q) \end{split} \quad \text{(charge conjugation)}$$

 k^2 , Q^2 , $w = k \cdot Q$

$$\begin{split} \Gamma^{\mu}(k,Q) &= c_1 \, k^{\mu} + c_2 \, (\!\!\! k \cdot Q\!\!\!\! Q) \, Q^{\mu} \\ \overline{\Gamma}^{\mu}(k,Q) &:= \Gamma^{\mu}(-k,-Q) \stackrel{!}{=} -\Gamma^{\mu}(k,-Q) \end{split} \quad \text{(charge conjugation)}$$

$$\Gamma^{\mu}(k,Q) = c_1 k^{\mu} + c_2 (\mathbf{k} \cdot \mathbf{Q}) Q^{\mu}$$

$$\overline{\Gamma}^{\mu}(k,Q) := \Gamma^{\mu}(-k,-Q) \stackrel{!}{=} -\Gamma^{\mu}(k,-Q) \quad \text{ (charge conjugation)}$$

$$\Gamma^{\mu}(k,Q) = c_1 k^{\mu} + c_2 (\mathbf{k} \cdot \mathbf{Q}) Q^{\mu}$$

$$\overline{\Gamma}^{\mu}(k,Q) := \Gamma^{\mu}(-k,-Q) \stackrel{!}{=} -\Gamma^{\mu}(k,-Q) \quad \text{ (charge conjugation)}$$

$$\Gamma^{\mu}(k,Q) = c_1 k^{\mu} + c_2 (\mathbf{k} \cdot \mathbf{Q}) Q^{\mu}$$

$$\overline{\Gamma}^{\mu}(k,Q) := \Gamma^{\mu}(-k,-Q) \stackrel{!}{=} -\Gamma^{\mu}(k,-Q) \quad \text{ (charge conjugation)}$$

$$Q^{\mu} \Gamma^{\mu} = c_1 w + c_2 w Q^2 = 0$$

$$\Gamma^{\mu}(k,Q) = c_1 k^{\mu} + c_2 (\mathbf{k} \cdot \mathbf{Q}) Q^{\mu}$$

$$\overline{\Gamma}^{\mu}(k,Q) := \Gamma^{\mu}(-k,-Q) \stackrel{!}{=} -\Gamma^{\mu}(k,-Q) \quad \text{ (charge conjugation)}$$

$$Q^{\mu} \Gamma^{\mu} = c_1 w + c_2 w Q^2 = 0$$

$$\Rightarrow \left[\begin{array}{cc} w & w Q^2 \end{array}\right] \left[\begin{array}{c} c_1 \\ c_2 \end{array}\right] = 0$$

$$\Gamma^{\mu}(k,Q) = c_1 k^{\mu} + c_2 (k \cdot Q) Q^{\mu}$$

$$\overline{\Gamma}^{\mu}(k,Q) := \Gamma^{\mu}(-k,-Q) \stackrel{!}{=} -\Gamma^{\mu}(k,-Q) \quad \text{ (charge conjugation)}$$

$$Q^{\mu} \Gamma^{\mu} = c_1 w + c_2 w Q^2 = 0$$

$$\Rightarrow \left[\begin{array}{cc} w & w \, Q^2 \end{array} \right] \left[\begin{array}{c} c_1 \\ c_2 \end{array} \right] = 0$$

$$\Rightarrow \left[\begin{array}{cc} 1 & Q^2 \end{array} \right] \left[\begin{array}{c} c_1 \\ c_2 \end{array} \right] = 0$$

$$\Gamma^{\mu}(k,Q) = c_1 k^{\mu} + c_2 (\mathbf{k} \cdot \mathbf{Q}) Q^{\mu}$$
$$\overline{\Gamma}^{\mu}(k,Q) := \Gamma^{\mu}(-k,-Q) \stackrel{!}{=} -\Gamma^{\mu}(k,-Q)$$

Transversality:

$$\Rightarrow \begin{bmatrix} w & w Q^2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} 1 & Q^2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = 0$$

 $Q^{\mu} \Gamma^{\mu} = c_1 w + c_2 w Q^2 = 0$

(charge conjugation)

but not

$$\begin{bmatrix} 1 & \frac{1}{Q^2} \end{bmatrix} \begin{bmatrix} c_2 \\ c_1 \end{bmatrix} = 0 \quad !!$$

$$\begin{split} \Gamma^{\mu}(k,Q) &= c_1\,k^{\mu} + c_2\,(\boldsymbol{k}\cdot\boldsymbol{Q})\,Q^{\mu} \\ \overline{\Gamma}^{\mu}(k,Q) &:= \Gamma^{\mu}(-k,-Q) \stackrel{!}{=} -\Gamma^{\mu}(k,-Q) \end{split} \tag{charge conjugation}$$

$$\begin{split} Q^{\mu} \, \Gamma^{\mu} &= c_1 \, w + c_2 \, w \, Q^2 = 0 \\ \\ c_1 &= -c_2 \, Q^2 \quad \Rightarrow \quad \Gamma^{\mu} = -c_2 \, (Q^2 \, k^{\mu} - w \, Q^{\mu}) \\ &= -c_2 \, (Q^2 \, \delta^{\mu\nu} - Q^{\mu} Q^{\nu}) \, k^{\nu} \\ &= -c_2 \, t^{\mu\nu}_{QQ} \, k^{\nu} \\ \\ &\Rightarrow \quad \Gamma^{\mu}(k,Q) = \mathbf{g_1} \, k^{\mu} + \mathbf{f_1} \, t^{\mu\nu}_{QQ} \, k^{\nu} \end{split}$$

$$ightarrow \Gamma^{\mu}(k,Q) = \underbrace{rac{g_1}{g_1}k^{\mu}}_{ extbf{G}} + \underbrace{rac{f_1}{f_2}t^{\mu
u}_{QQ}k^{
u}}_{ extbf{T}}$$

$$\begin{split} \Gamma^{\mu}(k,Q) &= c_1 \, k^{\mu} + c_2 \, (k \cdot Q) \, Q^{\mu} \\ \overline{\Gamma}^{\mu}(k,Q) &:= \Gamma^{\mu}(-k,-Q) \stackrel{!}{=} -\Gamma^{\mu}(k,-Q) \end{split} \tag{charge conjugation}$$

Transversality:

$$Q^{\mu} \Gamma^{\mu} = c_1 w + c_2 w Q^2 = 0$$

$$\begin{array}{rcl} c_1 = -c_2\,Q^2 & \Rightarrow & \Gamma^\mu = -c_2\,(Q^2\,k^\mu - w\,Q^\mu) \\ & = -c_2\,(Q^2\,\delta^{\mu\nu} - Q^\mu Q^\nu)\,k^\nu \\ & = -c_2\,t^{\mu\nu}_{OO}\,k^\nu \end{array}$$
 G:

Ward-Takahashi identity only affects G:

$$\begin{split} Q^{\mu} \, \Gamma^{\mu} &= D(k_{+})^{-1} - D(k_{-})^{-1} = g_{1} \, w \\ \Rightarrow & g_{1} = 2 \, \frac{D(k_{+})^{-1} - D(k_{-})^{-1}}{k_{+}^{2} - k_{-}^{2}} = 2 \Delta \end{split} \qquad \qquad \Rightarrow \qquad \begin{split} \Gamma^{\mu}(k,Q) &= \underbrace{g_{1} \, k^{\mu}}_{\mathbf{G}} + \underbrace{f_{1} \, t^{\mu\nu}_{QQ} \, k^{\nu}}_{\mathbf{G}} \end{split}$$

$$\begin{split} \Gamma^{\mu}(k,Q) &= c_1\,k^{\mu} + c_2\,(\boldsymbol{k}\cdot\boldsymbol{Q})\,Q^{\mu} \\ \overline{\Gamma}^{\mu}(k,Q) &:= \Gamma^{\mu}(-k,-Q) \stackrel{!}{=} -\Gamma^{\mu}(k,-Q) \end{split} \tag{charge conjugation}$$

Transversality:

$$Q^{\mu} \Gamma^{\mu} = c_1 w + c_2 w Q^2 = 0$$

$$\begin{array}{rcl} c_1 = -c_2\,Q^2 & \Rightarrow & \Gamma^\mu = -c_2\,(Q^2\,k^\mu - w\,Q^\mu) \\ & = -c_2\,(Q^2\,\delta^{\mu\nu} - Q^\mu Q^\nu)\,k^\nu \\ & = -c_2\,t^{\mu\nu}_{QQ}\,k^\nu \end{array}$$

Transverse-longitudinal separation?

$$\Rightarrow \quad \tilde{g}_1 = \frac{2\Delta}{Q^2} \quad \Rightarrow \quad \tilde{f}_1 = f_1 + \frac{2\Delta}{Q^2} \quad \Rightarrow \quad \text{both kinematically dependent} \\ \text{and singular!}$$

Need em. transition FFs

But vertices are half offshell: need 'consistent couplings' Pascalutsa, Timmermans, PRC 60 (1999)

- em gauge invariance: $Q^{\mu} \Gamma^{\alpha\mu} = 0$
- spin-3/2 gauge invariance: $k^{\alpha} \Gamma^{\alpha\mu} = 0$
- invariance under point transformations: $\gamma^{\alpha} \Gamma^{\alpha\mu} = 0$
- no kinematic dependencies, "minimal" basis

$J^P={\textstyle\frac{1}{2}}^+$	$\frac{3}{2}^{+}$	$\frac{1}{2}^-$	$\frac{3}{2}^{-}$
N(940) N(1440) N(1710) N(1880)	N(1720) N(1900)	N(1535) N(1650) N(1895)	N(1520) N(1700) N(1875)
$\Delta(1910)$	Δ (1232) Δ (1600) Δ (1920)	Δ (1620) Δ (1900)	Δ (1700) Δ (1940)

Most general offshell vertices satisfying these constraints:

GE. Ramalho, 1806,04579

$$\frac{1}{2}^+ \rightarrow \frac{1}{2}^\pm : \quad \Gamma^\mu = \begin{bmatrix} \mathbf{1} \\ \gamma_5 \end{bmatrix} \sum_{i=1}^8 \mathbf{F_i} T_i^\mu \qquad \begin{cases} \mathbf{f}_{QQ}^\mu \gamma^\nu \\ [\gamma^\mu, Q] \\ \dots \end{cases}$$

$$\label{eq:continuity} \begin{array}{l} \frac{1}{2}^{+} \rightarrow \frac{3}{2}^{\pm} : \; \Gamma^{\alpha\mu} = \begin{bmatrix} \gamma_{5} \\ 1 \end{bmatrix} \sum_{i=1}^{12} \mathbf{F_{i}} T_{i}^{\alpha\mu} & \begin{cases} \epsilon_{\mathbf{kQ}}^{\alpha\mu} \\ t_{\mathbf{kQ}}^{\alpha} \\ i \epsilon_{\mathbf{kq}}^{\alpha} t_{\mathbf{QQ}}^{\beta\mu} \end{cases}$$

$$\begin{cases} t_{QQ}^{\mu\nu} \gamma^{\nu} \\ [\gamma^{\mu}, Q] \\ \dots \end{cases}$$

Constraint-free transition FFs: only physical poles and cuts

• ρ **poles** \sim monotonous behavior (+ zero crossings for excited states)

Non-monotonicity at low Q2
 ~ signature for cuts (ρ→ππ, etc.):
 meson cloud

$J^P={1\over 2}^+$	$\frac{3}{2}^{+}$	$\frac{1}{2}$	$\frac{3}{2}$
N(940) N(1440) N(1710) N(1880)	N(1720) N(1900)	N(1535) N(1650) N(1895)	N(1520) N(1700) N(1875)
$\Delta(1910)$	Δ (1232) Δ (1600) Δ (1920)	Δ (1620) Δ (1900)	Δ (1700) Δ (1940)

Example: N(1535) helicity amplitudes

- Y PDG
 - **CLAS** data
 - $userweb.jlab.org/{\sim}mokeev/resonance_electrocouplings$
- --- MAID
 - Tiator, Drechsel, Kamalov, Vanderhaeghen, EPJ 198 (2011)

$J^P = \frac{1}{2}^+$	$\frac{3}{2}^{+}$	$\frac{1}{2}$	$\frac{3}{2}^{-}$
N(940) N(1440) N(1710) N(1880)	N(1720) N(1900)	N(1535) N(1650) <i>N</i> (1895)	N(1520) $N(1700)$ $N(1875)$
$\Delta(1910)$	$\Delta(1232)$ $\Delta(1600)$ $\Delta(1920)$	Δ (1620) Δ (1900)	Δ (1700) Δ (1940)

N(1440)

Δ(1620)

Kinematics

$$\sum_{i=1}^{18}$$

$$= \sum c_i(\eta_+, \eta_-, \omega, \lambda) \, \bar{u}(p_f) \, X_i^{\mu\nu}(p, Q, Q') \, u(p_i)$$

18 CFFs

4 kinematic variables:

$$\eta_{+} = rac{Q^{2} + Q'^{2}}{2m^{2}}$$
 $\eta_{-} = rac{Q \cdot Q'}{m^{2}}$
 $Q^{2} - Q'^{2}$

$$\omega = \frac{Q^2 - Q'^2}{2m^2}$$
$$\lambda = -\frac{p \cdot Q}{m^2}$$

18 Compton tensors, form minimal basis

- · systematic derivation
- similar to Tarrach basis Tarrach, Nuovo Cim. A28 (1975)

$$X_i' = U_{ij} X_j$$
, $\det U = const$.

· CFFs free of kinematics

$$X_1^{\mu\nu} = \frac{1}{m^4} t_{Q'p}^{\mu\alpha} t_{pQ}^{\alpha\nu},$$

 $X_2^{\mu\nu} = \frac{1}{m^2} t_{Q'Q}^{\mu\nu},$

$$X_3^{\mu\nu} = \frac{1}{m^4} t_{Q'Q'}^{\mu\alpha} t_{QQ}^{\alpha\nu},$$

$$X_4^{\mu\nu} = \frac{1}{m^6} t_{Q'Q'}^{\mu\alpha} p^{\alpha} p^{\beta} t_{QQ}^{\beta\nu},$$

 $X_5^{\mu\nu} = \frac{\lambda}{m^4} \left(t_{Q'Q'}^{\mu\alpha} t_{pQ}^{\alpha\nu} + t_{Q'p}^{\mu\alpha} t_{QQ}^{\alpha\nu} \right),$

$$X_6^{\mu\nu} = \frac{1}{m^2} \epsilon_{Q'Q}^{\mu\nu},$$

$$X_7^{\mu\nu} = \frac{1}{im^3} \left(t_{Q'Q'}^{\mu\alpha} \varepsilon_{\gamma Q}^{\alpha\nu} - \varepsilon_{Q'\gamma}^{\mu\alpha} t_{QQ}^{\alpha\nu} \right),$$

$$X_8^{\mu\nu} = \frac{\omega}{im^3} \left(t_{Q'Q'}^{\mu\alpha} \varepsilon_{\gamma Q}^{\alpha\nu} + \varepsilon_{Q'\gamma}^{\mu\alpha} t_{QQ}^{\alpha\nu} \right),$$

GF. Ramalho. PRD 98 (2018)

• CS on scalar particle

- CS on scalar particle
- CS on pointlike scalar
- CS on pointlike fermion

- CS on scalar particle
- CS on pointlike scalar
- CS on pointlike fermion
- Nucleon Born poles in s & u channel
- Scalar pole in t channel

- CS on scalar particle
- CS on pointlike scalar
- CS on pointlike fermion
- Nucleon Born poles in s & u channel
- Scalar pole in t channel
- **Pion pole** in t channel $(\pi^0 \to \gamma^* \gamma^*)$

GE, Fischer, Weil, Williams, PLB 774 (2017)

Polarizabilities

Scalar polarizabilities:

$$\left[\begin{array}{c} \alpha+\beta\\ \beta \end{array}\right] = -\frac{\alpha_{\rm em}}{m^3} \left[\begin{array}{c} c_1\\ c_2 \end{array}\right]$$

Spin polarizabilities:

$$\left[\begin{array}{c} \gamma_{E1E1} \\ \gamma_{M1M1} \\ \gamma_{E1M2} \\ \gamma_{M1E2} \end{array} \right] = \frac{\alpha_{\rm em}}{2m^4} \left[\begin{array}{c} c_6 + 4c_{11} - 4c_{12} \\ -c_6 - 2c_{10} + 4c_{12} \\ c_6 + 2c_{10} \\ -c_6 \end{array} \right]$$

$$\begin{bmatrix} \gamma_0 \\ \gamma_{\pi} \end{bmatrix} = -\frac{2\alpha_{\rm em}}{m^4} \begin{bmatrix} c_{11} \\ c_6 + c_{10} + c_{11} - 2c_{12} \end{bmatrix}$$

Spin polarizabilities

Summary

- Compton scattering: minimal basis, constraint-free CFFs
- Electromagnetic transition currents: minimal bases, constraint-free TFFs
- Fits of experimental TFFs
- Nucleon resonances in Compton scattering: derived in general kinematics
- Only Δ(1232) and N(1520) relevant for polarizabilities

GE, Ramalho, PRD 98 (2018)

Backup slides

Nucleon- Δ - γ transition

- Magnetic dipole transition (G^{*}_M) dominant: quark spin flip (s wave). "Core + 25% pion cloud"
- Electric & Coulomb quadrupole ratios small & negative, encode deformation.
 Reproduced without pion cloud: OAM from p waves!
 GE, Nicmorus, PRD 85 (2012)

