

PRODUCTION OF BARYONS, BOUND BARYON SYSTEMS AND EXOTICA WITH ALICE AT THE LHC

Stefano Piano on behalf of ALICE Collaboration INFN sez. Trieste

MOTIVATION

- > LF baryon production is a probe of hadronization and test of non-pertubative QCD models
- > (anti-)(hyper-)nuclei are good probes of the coalescence mechanism
- > (anti-)(hyper-)nuclei yields are sensitive to the freeze-out temperature in heavy-ion collision due to their large mass (e.g. in the thermal model yield scales roughly $\propto e^{(-M/Tchem)}$)
- ▶ light (anti-)(hyper-)nuclei have small binding energies and small ∧ separation energies,
 - e.g. $B_{\Lambda}({}^{3}_{\Lambda}H) = 0.13 \pm 0.05$ MeV [H. Bando et al., Int. J. Mod. Phys. A 5 4021 (1990)] :
 - > they should dissociate in a medium with high T_{chem} (~156 MeV) and be suppressed
 - ➤ if their yields equal to thermal model prediction ⇒ sign for adiabatic (isentropic) expansion in the hadronic phase
- Anti-nuclei in nature:
 - matter-antimatter asymmetry

[J.Adam et al. (ALICE Collaboration), Nature Phys. 11, no.10, 811 (2015)]

- Iight nuclei measurements in high-energy physics can be used in dark matter searches to estimate the background coming from the secondary anti-nuclei [K. Blum et al., Phys. Rev. D 96(2017)103021]
- > Femtoscopy: analyses of two-baryon correlations allow to probe the strong interaction
 - > Test of theoretical models and direct implications for neutron stars

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: dE/dx, time-of-

flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V⁰, cascade)_____

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: dE/dx, time-of-

flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V⁰, cascade)

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: dE/dx, time-of-

flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V⁰, cascade)

B. B. Abelev et al. (ALICE Collaboration), Int. J. Mod. Phys. A 29 (2014) 1430044 The 12th International Workshop on the Physics of Excited Nucleons | 12-06-2019 | Stefano Piano

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: dE/dx, time-of-

flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V⁰, cascade)

The 12th International Workshop on the Physics of Excited Nucleons | 12-06-2019 | Stefano Piano

B. B. Abelev et al. (ALICE Collaboration), Int. J. Mod. Phys. A 29 (2014) 1430044

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: dE/dx, time-of-

flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V⁰, cascade)

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: dE/dx, time-of-

flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V⁰, cascade)

ALICE is ideally suited for the identification of (anti-) baryons and light (anti-)(hyper)nuclei

PARTICLES AND NUCLEI IDENTIFICATION

Low momenta

Identification via d*E*/dx measurement in the TPC:

- dE/dx resolution in central Pb-Pb collisions: ~6.5%
- Excellent separation of (anti-)nuclei from other particles over a wide momentum range
- About 10 anti-alpha candidates identified out of 23x10⁶ events by combining TPC and TOF particle identification

Higher momenta

- Excellent TOF performance:
- > σ_{TOF} ≈ 85 ps in Pb-Pb collisions allows identification of light nuclei over a wide momentum range
- > Velocity measurement with the TOF detector is used to evaluate the m^2 distribution and to subtract background from the signal in each p_{T} -bin by fitting the m^2 distribution

ALICE AT WORK SINCE 2009 pp, p-Pb, Pb-Pb and Xe-Xe collisions

Energy and system dependence studies of particle production

System	Year	√sNN (TeV)	L _{int}
Pb-Pb	2010-2011 2015 2018	2.76 5.02 5.02	~75 μb⁻¹ ~250 μb⁻¹ ~1 nb⁻¹
Xe-Xe	2017	5.44	~0.3 µb⁻¹
p-Pb	2013 2016	5.02 5.02, 8.16	~15 nb ⁻¹ ~3 nb ⁻¹ , ~25 nb ⁻¹
рр	2009-2013 2015-2018	0.9, 2.76, 7, 8 5.02, 13	~200 µb⁻¹, ~100 µb⁻¹, ~1.5 pb⁻¹, ~2.5 pb⁻¹ ~1.3 pb⁻¹ , ~25 pb⁻¹

Large statistics of pp, p-Pb and Pb-Pb collisions at the same $\sqrt{s_{\rm NN}}$

precise comparison studies

STRANGE BARYON PRODUCTION

The antiparticle/particle production yields are identical within uncertainities, consistent with a vanishing baryochemical potential $\mu_{\rm B}$ at LHC energies \Rightarrow possible to study particle and anti-particles together

Statistics allow to study the p_{T} and multiplicity dependence of baryon production

30000

Ratio of yields to $(\pi^++\pi^-)$

10⁻³

ALI-PREL-134502

T L L L L L L L L

10

RELATIVE STRANGENESS PRODUCTION

in pp, p-Pb and Pb-Pb @@@@@ $2K_{s}^{0}$ ◍◍◍◍◍┉ $\Lambda + \overline{\Lambda} (\times 2)$ [(×6) 10⁻² $\Omega^{-}+\overline{\Omega}^{+}$ (×16) PYTHIA8 DIPSY EPOS LHC ALICE pp, $\sqrt{s} = 7$ TeV Nat. Phys. 13 (2017) 535-539 p-Pb, $\sqrt{s_{_{
m NN}}}$ = 5.02 TeV PLB 728 (2014) 25-38

Preliminary Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

 10^{2}

 10^{3}

1 1 1 1 1 1 1

Historically a signature of the Quark-Gluon Plasma

(Rafelski & Mueller, PRL 48 (1982) 1066)

- Smooth evolution from pp to Pb-Pb
- Enhancement observed in A-A which increases with strangeness content
- Enhancement also seen in the smaller systems pp and p-Pb
- No significant energy and system dependence is observed at similar multiplicity
- Traditional soft-QCD models based on Multiple Parton Interactions (MPI), e.g. PYTHIA, are not able to reproduce the observed trends:
 - Breaks concept of universality and factorization of fragmentation [JHEP01(2017)140]
- MPI based models that embed also effects from densely packed strings (DIPSY) or core-corona hadronization mechanisms (EPOS) reproduce qualitatively the observed increasing trends for strange particles
- Further tuning needed to reproduce all ratios simultaneously (DIPSY overestimates p/π) (not shown)

PYTHIA 8: Comput. Phys. Commun. 178 (2008) 852867 EPOS LHC: PRC92 (2015) 034906 $\langle dN_{ch}/d\eta \rangle_{|\eta|<~0.5}$ DIPSY: PRD92 (2015) 094010

ALICE, Nature Physics 13 (2017) 535

RELATIVE STRANGENESS PRODUCTION

Hadrochemistry evolves smoothly with the final-state multiplicity of the collision. Evolution is dramatic for strange particles:

the stranger, the steeper!

For proton (S=0) is consistent with unity up to highest $\langle dN_{ch}/d\eta \rangle$

not a baryon effect !

ALICE, Nature Physics 13 (2017) 535

(ANTI-)(HYPER)NUCLEI PRODUCTION IN URHIC

Statistical Thermal model

- Thermodynamic approach to particle production in heavy-ion collisions
- Abundances fixed at chemical freeze-out (*T*_{chem})
 (hyper)nuclei are very sensitive to *T*_{chem} because
 of their large mass (*M*)

Coalescence

- If baryons at freeze-out are close enough in phase space an (anti-)(hyper-)nucleus can be formed
- (Hyper-)nuclei are formed by protons and neutrons
 (Λ) which have similar velocities after the freezeout

(ANTI-)(HYPER-)NUCLEI PRODUCTION AT LHC

ALICE

Light nuclei

Hypertriton

 \checkmark

Yield/event

at mid-rapidity and central collisions

~800

Production yield estimate of (anti-)(hyper)nuclei in central heavy-ion collisions at LHC energy based on thermal model:

Π

DEUTERON p_{T} SPECTRA

- Spectra become harder with increasing \geq multiplicity in Pb-Pb and show clear radial flow
- \triangleright The Blast-Wave fits describe the data well in Pb-Pb
- pp and p-Pb spectrum show no sign of radial \geq flow

ALI-PREL-130488

1

pp

2

3

1/N_{ev} d²N/(dp₇dy) (GeV/*c*)⁻¹

10

10⁻¹

10⁻²

' 0⁻³

 10^{-4}

 10^{-5}

 10^{-6}

The 12th International Workshop on the Physics of Excited Nucleons | 12-06-2019 | Stefano Piano

0

5

ALI-PREL-146145

rons, Pb-Pb \s_{NN}

5% (x512)

30-40% (x32)

50-60% (x8)

70-80% (x2)

---· Individual fit

Δ

0-20% (x128)

DEUTERON TO PROTON RATIO

- > No significant centrality dependence in Pb-Pb
- Ratio in pp collisions is a factor 2.5 lower than in Pb-Pb collisions
- ➢ d/p ratio increases when going from pp to p-Pb and peripheral Pb-Pb, until it reaches the grand canonical thermal model value (d/p ∼ $3x10^{-3}$ at T_{ch} = 156 MeV)

DEUTERON TO PROTON RATIO

Simple coalescence works in small systems while thermal models describe better the Pb-Pb data

Is this smooth transition suggesting a single description for the nucleosynthesis in HEP?

ALI-PREL-146196

- No significant centrality dependence in Pb-Pb
- > Ratio in pp collisions is a factor 2.5 lower than in Pb-Pb collisions
- > d/p ratio increases when going from pp to p-Pb and peripheral Pb-Pb, until it reaches the grand canonical thermal model value (d/p ~ $3x10^{-3}$ at T_{ch} = 156 MeV)

COALESCENCE PARAMETER B_A

- If baryons at freeze-out are close enough in phase space (i.e. geometrically and in momentum) and match spin state, a (anti-)nucleus can be formed
- Usually, since the nucleus is larger w.r.t. the source, the phase space is reduced to the momentum space
- Assuming that p an n have the same mass and have the same p_T spectra:

$$E_A \frac{\mathrm{d}^3 N_A}{\mathrm{d} p_A^3} = B_A \left(E_\mathrm{p} \frac{\mathrm{d}^3 N_\mathrm{p}}{\mathrm{d} p_\mathrm{p}^3} \right)^2$$

> For A=2:
$$B_2 = E_d \frac{\mathrm{d}^3 N_d}{\mathrm{d} p_d^3} \left(E_p \frac{\mathrm{d}^3 N_p}{\mathrm{d} p_p^3} \right)^{-2}$$

Measured deuteron p_{T} -spectra

Measured proton p_{T} -spectra

 \geq

 \geq

 $B_2 = E_d \frac{\mathrm{d}^3 N_d}{\mathrm{d} p_d^3} \left(E_p \frac{\mathrm{d}^3 N_p}{\mathrm{d} p_n^3} \right)$

Pb-Pb and increases with p_{T}

Õ

1.5

000

0.5

10⁻²

10⁻³

 10^{-4}

INEL normalisation uncertainty: 2.55%

ALICE Preliminary deuterons, |y| < 0.5

2.5

2

COALESCENCE PARAMETER B₂

$$B_2 = E_d \frac{\mathrm{d}^3 N_d}{\mathrm{d} p_d^3} \left(E_p \frac{\mathrm{d}^3 N_p}{\mathrm{d} p_p^3} \right)^{-2}$$

- \geq Coalescence parameter B_2 decreases with centrality in Pb-Pb and increases with p_{T}
- Similar effect seen in p-Pb: decrease with multiplicity, \geq but less pronounced

COALESCENCE PARAMETER B₂

ALI-PREL-146162

The coalescence parameter evolves smoothly as a function of multiplicity with no discontinuity between different colliding systems

(*) R. Scheibl and U. Heinz, Phys.Rev. C59, 1585 (1999)

The 12th International Workshop on the Physics of Excited Nucleons | 12-06-2019 | Stefano Piano

Simple coalescence model:

- Flat B_2 vs p_T and no dependence on multiplicity/centrality
- Observed "small systems": pp, p-Pb and peripheral Pb-Pb

More elaborated coalescence model takes into account the volume of the source:

- B_2 scales like HBT radii (*) \geq
- Decrease with centrality in Pb-Pb is explained as an increase in the source volume
- Increase with p_{T} in central Pb-Pb reflects the k_{τ} -dependence of the homogeneity volume in HBT
- Qualitative agreement in central Pb-Pb collisions 22

23

LOOKING TO THE SKY K. Blum et al., PRD 96 (2017) 103021

Cosmic Rays anti-deuterons and anti-³He suggested as probe of DM annihilation, but anti-nuclei can be produced also by pp collisions with interstellar matter

*B*₃ (*B*₂) at LHC can constrain secondary anti-nuclei flux near Earth induced by CRs interactions with interstellar matter (H, ³He mainly)

Poisson probability for detecting N (1, 2, ...) secondary ${}^{3}\overline{He}$ events in 5-yr analysis of AMS-02

Precise measurement of B_3 (B_2) are essential for primordial anti-matter and Dark Matter searches !

They estimate B_3 (green band) from: pp \rightarrow d direct measurements plus coalescence calibrated with HBT correlations

LOOKING TO THE SKY K. Blum et al., PRD 96 (2017) 103021

Cosmic Rays anti-deuterons and anti-³He suggested as probe of DM annihilation, but anti-nuclei can be produced also by pp collisions with interstellar matter

*B*₃ (*B*₂) at LHC can constrain secondary anti-nuclei flux near Earth induced by CRs interactions with interstellar matter (H, ³He mainly)

Poisson probability for detecting N (1, 2, …) secondary ³He events in 5-yr analysis of AMS-02

Precise measurement of B_3 (B_2) are essential for primordial anti-matter and Dark Matter searches !

> ALICE measurement of B₃ in pp

ANTI-ALPHA

For the full statistics of 2011 (Pb-Pb@2.76 TeV) ALICE identified 10 Anti-Alphas using TPC and TOF

TOF β vs *p*/z after pre-selection of 3σ in TPC shows clear separation \rightarrow Cut on Alpha's *p*/z needed to suppress secondary tracks

Anti-Alpha re-measured also in the new data sample Pb-Pb@5.02 TeV

NUCLEI PRODUCTION IN Pb-Pb

For the full statistics of 2011 (Pb-Pb@2.76 TeV) ALICE identified 10 Anti-Alphas using TPC and TOF

TOF β vs *p*/z after pre-selection of 3σ in TPC shows clear separation \rightarrow Cut on Alpha's *p*/z needed to suppress secondary Anti-Alpha re-measured also in the new data sample Pb-Pb@5.02 TeV

Nuclei yields follow an exponential decrease with mass as predicted by the thermal model

In Pb-Pb the penalty factor for adding one baryon is ~360 (for particles and antiparticles)

NUCLEI PRODUCTION IN Pb-Pb AND IN p-Pb

For the full statistics of 2011 (Pb-Pb@2.76 TeV) ALICE identified 10 Anti-Alphas using TPC and TOF

TOF β vs *p/z* after pre-selection of 3σ in TPC shows clear separation \rightarrow Cut on Alpha's *p/z* needed to suppress secondary Anti-Alpha re-measured also in the new data sample Pb-Pb@5.02 TeV

Nuclei yields follow an exponential decrease with mass as predicted by the thermal model

In Pb-Pb the penalty factor for adding one baryon is ~360 (for particles and antiparticles) in p-Pb it is ~635 and in p-p ~940 The 12th International Workshop on the Physics of Excited Nucleons | 12-06-2019 | Stefano Piano

THERMAL MODEL FITS

Thermal model is very successful in reproducing the particle yields measured by ALICE in Pb-Pb collisions

An AND H-DIBARYON SEARCH

H-Dibaryon: hypothetical udsuds bound state

- > First predicted by Jaffe [Jaffe, PRL 38, 195617 (1977)]
- Several predictions of bound and also resonant states.
- Recent Lattice models predict weakly bound states [Inoue et al., PRL 106, 162001 (2011), Beane et al., PRL 106, 162002 (2011)]
- If H-Dibaryon is bound: $m_{H} < \Lambda \Lambda$ threshold
- > measurable channel H $\rightarrow \Lambda p\pi$ but BR depends on binding energy

Bound state of $\pmb{\Lambda n}$?

HypHI experiment at GSI sees evidence of a

new state: $\Lambda n \rightarrow d + \pi^-$ [C. Rappold et al. (HypHI collaboration), Phys. Rev. C88, 041001(R) (2013)]

Schaffner-Bielich et al., PRL 84, 4305 (2000)

An AND H-DIBARYON SEARCH

- > No signal visible
- The upper limits for exotica are lower than the thermal model expectation by a factor of 20
- Thermal models with the same temperature describe precisely the production yield of deuterons, ³He and ³_AH
- The existence of such states with the assumed B.R., mass and lifetime is questionable

A NEW GENERATION OF HADRON-HADRON INTERACTION MEASUREMENTS WITH ALICE

Femtoscopy: analyses of two-particle correlations allow to study the interactions

A NEW GENERATION OF HADRON-HADRON INTERACTION MEASUREMENTS WITH ALICE

Femtoscopy: analyses of two-particle correlations allow to study the interactions

Interplay between the strong attractive and Coulomb repulsive interactions

Fit to the experimental with CATS (a femtoscopic correlation analysis tool using the Schrödinger equation) [1]:

Gaussian source and Argonne v18 potential describes the p-p correlation function

Source size of the p-p (7 TeV) system $r_0=1.14$ fm

[1] D.L.Mihaylov et al., Eur.Phys.J. C 78 (2018) no.5,394

FIT OF THE CORRELATION FUNCTION $p-p, \Lambda-p \text{ and } \Lambda-\Lambda$

Fixed the source size from pp (7 TeV) system $r_0=1.14$ fm

LO: H. Polinder, J.H., U. Meiβner, NPA 779 (2006) 244 NLO: J.Haidenbauer., N.Kaiser, et al., NPA 915 (2013) 24

Combination of spin singlet and triplet

Statistics not sufficient to test different models

FIT OF THE CORRELATION FUNCTION $p-p, \Lambda-p \text{ and } \Lambda-\Lambda$

Lednicky [1] fit carried out on Λ - Λ [1] M.A.Lisa et al., Ann. Rev. Nucl. Part. Sci. 55 (2005) 357 too large uncertainty yet on the scattering parameters

The 12th International Workshop on the Physics of Excited Nucleons | 12-06-2019 | Stefano Piano

ALICE

 $C(k^*)$

3

2.5

2

1.5

0

https://arxiv.org/pdf/1904.12198.pdf 2.6 $C(k^*)$ ALICE p–Pb $\sqrt{s_{NN}}$ = 5.02 TeV ALICE p–Pb $\sqrt{s_{NN}}$ = 5.02 TeV 2.4 $r_0 = 1.427 \pm 0.007$ (stat.) $^{+0.001}_{-0.014}$ (syst.) fm $p-\Xi^{-} \oplus \overline{p}-\overline{\Xi}^{+}$ 2.2 Coulomb + HAL-QCD 2 Coulomb + Argonne v_{18} (fit) Coulomb 1.8 $p-\Xi$ sideband background 1.6 1.4 1.2 100 150 200 k* (MeV/c) 0.8 150 200 100 200 300 *k** (MeV/*c*) *k** (MeV/*c*)

Gaussian source

Argonne v18 strong interaction potential Coulomb interaction & Quantum statistics Size of source comparable to the typical range of strong potentials Sensitivity to features of the potentials

100

p-p ⊕ p-p

Ο

C(k*)

50

0.95

50

First observation of strong attractive interaction in $p-\Xi^-$

modeled with preliminary QCD strong potential by the HAL QCD collaboration (Hatsuda et al., NPA967 (2017) 856, PoS Lattice2016 (2017) 116) Coulomb-only hypothesis excluded at $\sim 3\sigma$

The experimental $p-\Xi^-$ correlation function shows a stronger enhancement than the Coulomb-only \Rightarrow the total interaction is more attractive !

Validated lattice predictions ⇒ consequences for the Equation of State (EoS) of neutron stars:

The Ξ^- single-particle potential in pure neutron matter at saturation density from HAL QCD: **Slightly repulsive U**_{Ξ^-} ~ 6 MeV

⇒ stringent constraint with consequences for the EoS containing hyperons (stiffer EoS)

First observation of strong attractive interaction in p-Ξ⁻

modeled with preliminary QCD strong potential by the HAL QCD collaboration (Hatsuda et al., NPA967 (2017) 856, PoS Lattice2016 (2017) 116) Coulomb-only hypothesis excluded at ~3σ

THE AA EXCLUSION PLOT

OUTLOOK – ALICE UPGRADE

During the Long Shutdown 2 (2019-2020) upgrades of:

- New Inner Tracking System (ITS)
 - improved pointing precision
 - ✓ less material -> thinnest tracker at the LHC
- Upgrade of Time Projection Chamber (TPC):
 - ✓ new GEM technology for readout chambers
 - ✓ continuous readout
 - ✓ faster readout electronics
- ALICE Online-Offline computing system (O2):
 - ✓ new architecture
 - ✓ on line tracking & data compression
 - ✓ 50kHz Pb-Pb event rate

At the end of RUN 4 (2029):

the expected Integrated Luminosity: ~10 nb⁻¹ (~8x10⁹ collisions in the 0-10% centrality class)

OUTLOOK – ALICE UPGRADE

During the Long Shutdown 2 (2019-2020) upgrades of:

- New Inner Tracking System (ITS)
 - improved pointing precision
 - ✓ less material -> thinnest tracker at the LHC
- Upgrade of Time Projection Chamber (TPC):
 - ✓ new GEM technology for readout chambers
 - ✓ continuous readout
 - ✓ faster readout electronics
- ALICE Online-Offline computing system (O2):
 - ✓ new architecture
 - \checkmark on line tracking & data compression
 - ✓ 50kHz Pb-Pb event rate

At the end of RUN 4 (2029):

the expected Integrated Luminosity: ~10 nb⁻¹ (~8x10⁹ collisions in the 0-10% centrality class)

All the physics which is now done for A = 2 and A = 3 (hyper-)nuclei will be done for A = 4

CONCLUSIONS

- Excellent ALICE performance allows for detection of (anti-)baryons, light (anti-)nuclei and (anti-)hypernuclei
- ALICE (anti-)baryons and (anti-)(hyper-)nuclei production measurements challenge the production models (QCD, thermal and coalescence models)
 - Copious production of loosely bound objects measured by ALICE as predicted by the thermal model
 - ✓ B_2 coalescence parameter evolves smoothly as a function of multiplicity with no discontinuity between different colliding system
 - ✓ Valuable inputs (B_2 and B_3) for Astroparticle Physics provided
 - The upper limits for exotica are lower than the thermal model expectation by a factor of 20
- Femtoscopic measurements sensitive to differences in potentials
 - ✓ Already measured with ALICE p-p, p- Λ , Λ - Λ , p- Ξ , p-K
 - ✓ First time direct observation of an attractive $p-\Xi^-$ interaction
- Future LHC runs, RUN 3 and RUN 4, and ALICE upgrades will allow for precise study of (anti-)(hyper-)nuclei production yield (and lifetime)
 - ✓ New and more precise data are expected from the LHC in the next years !

A Large Ion Collider Experiment

COLLISION GEOMETRY

- Nuclei are extended objects
- Geometry not directly measurable
- Centrality (percentage of the total cross section of the nuclear collision) connected to observables via Glauber model
- Data classified into centrality percentiles for which the average impact parameter, number of participants, and number of binary collisions can be determined

PROBING THE MESON-BARYON INTERACTION K⁺p and c.c.

arXiv:1905.13470 [nucl-ex]

- The Coulomb-only (red band) and Coulomb+Strong (blue band) potentials have been used to fit the data
- The Coulomb-only potential is not able to fit data
- The Jülich model potential [1] is used to evaluate the strong component (the Coulomb interaction is included using Gamow factor): agreement between data and Coulomb+Strong potential
- The introduction of the strong potential is needed to fit the data: the measured correlation functions are sensitive to the strong interaction

[1] M. Hoffmann et al., Nucl.Phys. A593 (1995) 341-361 Partial wave function computed by Johann Haidenbauer

PROBING THE MESON-BARYON INTERACTION K⁻p and c.c.

- Observation of a bump close to the K⁰n threshold (89 MeV/c in the lab frame \rightarrow 58 MeV/c in the CM frame)
- First experimental evidence of the opening of the K⁰n (K
 ⁰n) isospin breaking channel → femtoscopy is a unique tool to study the Kp scattering, where the conventional scattering experiments at fixed target are difficult to perform.

PROBING THE MESON-BARYON INTERACTION K⁻p and c.c.

- Observation of a bump close to the K⁰n threshold (89 MeV/c in the lab frame \rightarrow 58 MeV/c in the CM frame)
- First experimental evidence of the opening of the K⁰n (K
 ⁰n) isospin breaking channel → femtoscopy is a unique tool to study the Kp scattering, where the conventional scattering experiments at fixed target are difficult to perform.

see also B. Borasoy et al Phys. Rev. C74 (2006) 055201

PROBING THE MESON-BARYON INTERACTION K⁻p and c.c.

- The Coulomb-only and Coulomb+Strong potentials have been used to fit the data
- Blue bands: Coulomb potential only
- Light blue bands: chiral Kyoto model [1-5] with approximate boundary conditions:
 - K⁻ K⁰ mass difference not considered (isospin averaged masses)
- Σπ and Λπ coupled channels neglected (dozen of resonances)
- Red bands: the Jülich strong potential, recently been updated to reproduce the SIDDHARTA results [6]:
 - includes the K⁻ K⁰ mass difference
 - and coupled channels

PRC 93 (2016) 015201
 PRC 95 (2017) 065202
 Prog.Part.Nucl.Phys. 95 (2017) 279

[4] PLB 706 (2011) 63
[5] NPA 881 (2012) 98
[6] NPA 981 (2019) 1

(ANTI-)HYPERTRITON IDENTIFICATION

Decay Channels

$$\frac{{}^{3}_{\Lambda} \mathrm{H} \rightarrow {}^{3} \mathrm{H} \mathrm{e} + \pi^{-}}{{}^{3}_{\Lambda} \overline{\mathrm{H}} \rightarrow {}^{3} \overline{\mathrm{H}} \mathrm{e} + \pi^{+}}$$

$$\frac{{}^{3}_{\Lambda} \mathrm{H} \rightarrow {}^{3} \mathrm{H} + \pi^{0}}{{}^{3}_{\Lambda} \overline{\mathrm{H}} \rightarrow {}^{3} \overline{\mathrm{H}} + \pi^{0}}$$

$$\frac{{}^{3}_{\Lambda} \mathrm{H} \rightarrow \mathrm{d} + \mathrm{p} + \pi^{-}}{{}^{3}_{\Lambda} \overline{\mathrm{H}} \rightarrow \overline{\mathrm{d}} + \overline{\mathrm{p}} + \pi^{+}}$$

$$\frac{{}^{3}_{\Lambda} \mathrm{H} \rightarrow \mathrm{d} + \mathrm{n} + \pi^{0}}{{}^{3}_{\Lambda} \overline{\mathrm{H}} \rightarrow \overline{\mathrm{d}} + \overline{\mathrm{n}} + \pi^{0}}$$

- ${}^{3}_{\Lambda}H$ search via two-body decays into charged particles:
- > Two body decay: lower combinatorial background
- Charged particles: ALICE acceptance and reconstruction efficiency for charged particles higher than for neutrals
 Signal extraction:
- \succ Identify ³He and π
- > Evaluate (³He, π) invariant mass
- > Apply topological cuts in order to:
 - isolate secondary decay vertex and
 - reduce combinatorial background

Preliminary results at $\sqrt{s_{NN}}$ = 5.02 TeV

(ANTI-)HYPERTRITON YIELDS

in three p_{T} bins for central (0-10%) events

for $\frac{3}{\Lambda}\overline{H}$ and $^{3}_{\Lambda}H$ separately

d*N*/d*y* x B.R. (${}^{3}_{\Lambda}$ H → 3 He π) yield extracted in four *p*_T bins for central (10-40%) events for ${}^{3}_{\Lambda}$ H and ${}^{3}_{\Lambda}$ H separately

PRECISE MASS MEASUREMENT

- ✓ Masses and binding energies of nuclei and anti-nuclei are compatible within uncertainties
- Measurement confirms the CPT invariance for light nuclei

- The precise measurement of the mass difference between nuclei and their anti-counterparts allows one to probe any difference in the interaction between nucleons and anti-nucleons.
- Looking at the mass difference between nuclei and their anti-nuclei it is possible to test the CPT invariance of the residual QCD "nuclear force"

