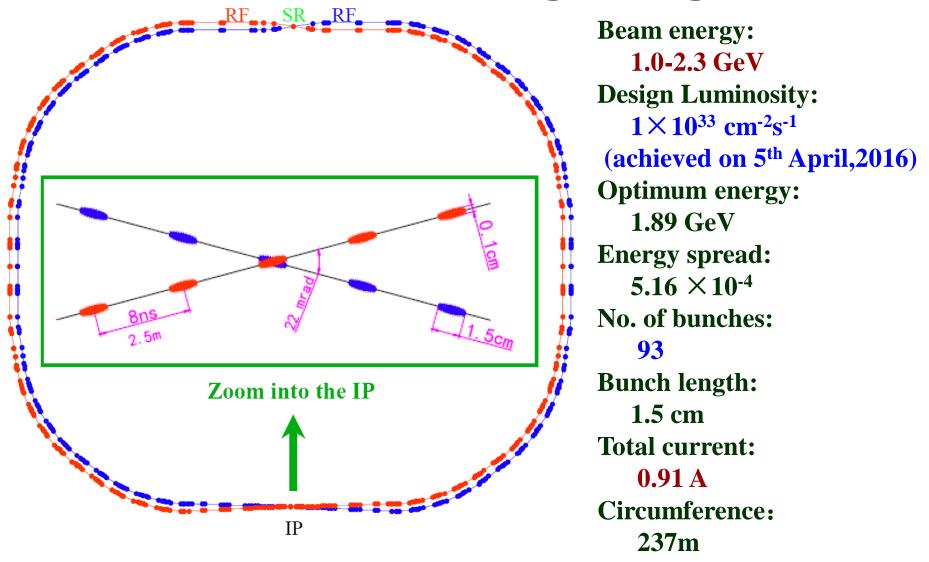
Baryon Decays and Spectroscopy at BESIII

Shuangshi FANG

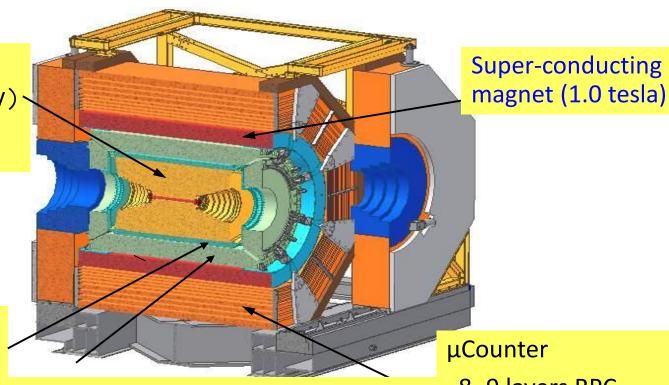
(for the BESII Collaboration)

Institute of High Energy Physics


NSTAR2019, 10-15 June, Bonn, Germany

OUTLINE

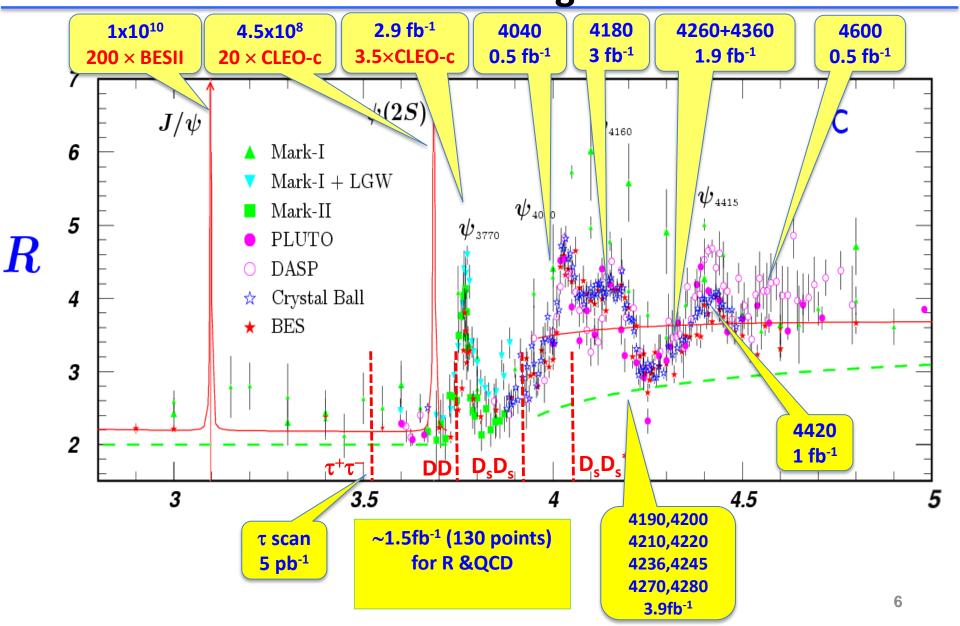
- BEPCII/BESIII status
- Baryon decays
- Baryon spectroscopy
- Summary & Prospects


BEPCII storage rings

The BESIII Detector

Drift Chamber (MDC) $\sigma P/P (0/_0) = 0.5\% (1 \text{GeV})$ $\sigma_{dE/dx} (^{0}/_{0}) = 6\%$

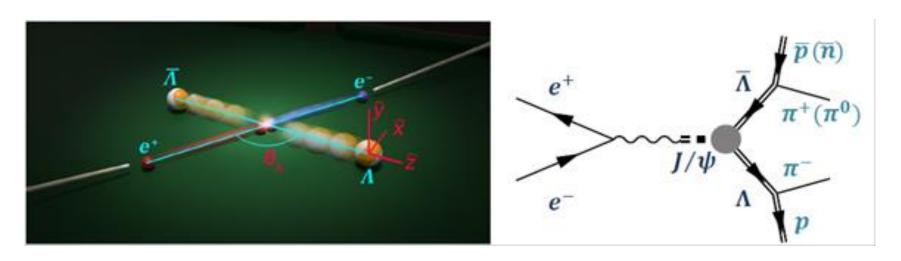
Time Of Flight (TOF) σ_T : 90 ps Barrel 110 ps endcap

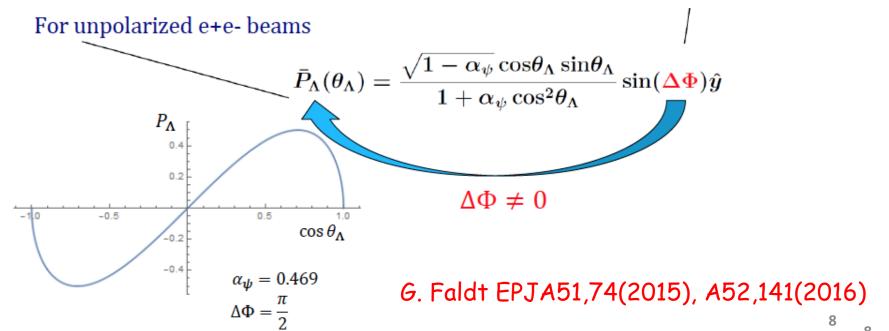

 $\sigma E/VE(^{0}/_{0}) = 2.5 \% (1 \text{ GeV})$ EMC: (CsI)

 $\sigma_{z,\phi}(cm) = 0.5 - 0.7 \text{ cm/VE}$

μCounter 8-9 layers RPC

 $\delta R\Phi = 1.4 \text{ cm}^2 1.7 \text{ cm}$


World largest data sample directly collected in the tau-charm region


Baryon Decays

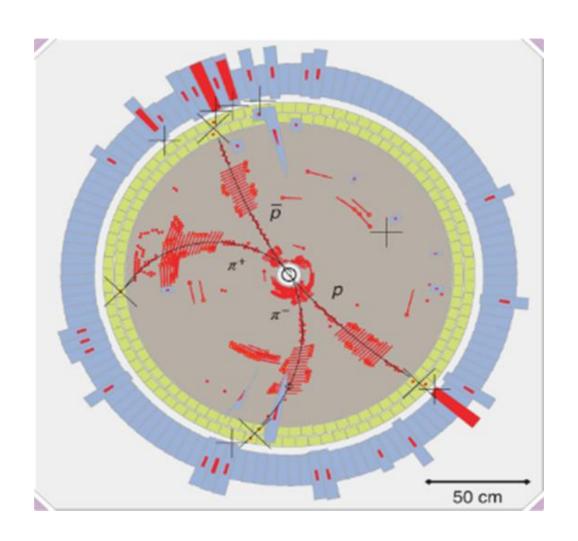
- \blacksquare Λ decay asymmetry parameters
- Ac decay asymmetry parameters
- Ac BFs at BESIII


Λ polarization in $J/\psi \rightarrow \Lambda$ Λ

Transition between e+e- and Λ $\overline{\Lambda}$ including helicity conserving and -flip amplitudes

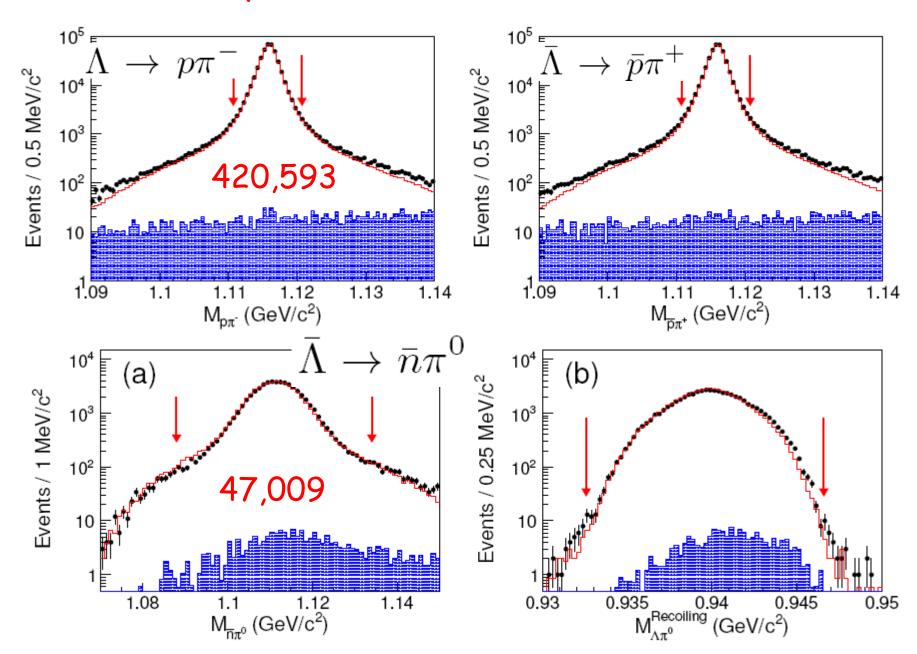
$$e^+e^- \rightarrow (\Lambda \rightarrow p\pi^-) \overline{\Lambda}$$

Hyperon polarization determined using angular distribution of the baryon from weak decay

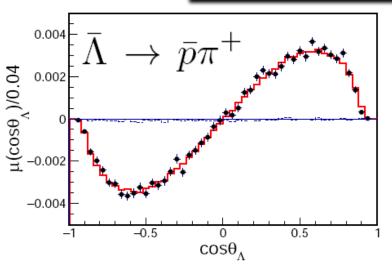

$$\mathcal{W}(\xi; \alpha_{\psi}, \Delta\Phi, \alpha_{-}, \alpha_{+}) = 1 + \alpha_{\psi} \cos^{2}\theta_{\Lambda}$$

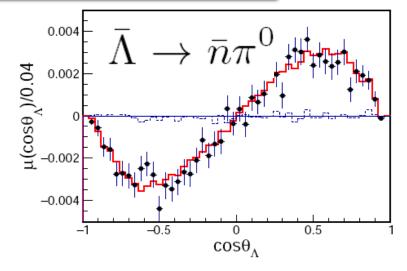
$$+ \alpha_{-}\alpha_{+} \left[\sin^{2}\theta_{\Lambda} \left(n_{1,x}n_{2,x} - \alpha_{\psi}n_{1,y}n_{2,y} \right) + \left(\cos^{2}\theta_{\Lambda} + \alpha_{\psi} \right) n_{1,z}n_{2,z} \right]$$

$$+ \alpha_{-}\alpha_{+}\sqrt{1 - \alpha_{\psi}^{2}} \cos(\Delta\Phi) \sin\theta_{\Lambda} \cos\theta_{\Lambda} \left(n_{1,x}n_{2,z} + n_{1,z}n_{2,x} \right)$$


$$+ \sqrt{1 - \alpha_{\psi}^{2}} \sin(\Delta\Phi) \sin\theta_{\Lambda} \cos\theta_{\Lambda} \left(\alpha_{-}n_{1,y} + \alpha_{+}n_{2,y} \right),$$

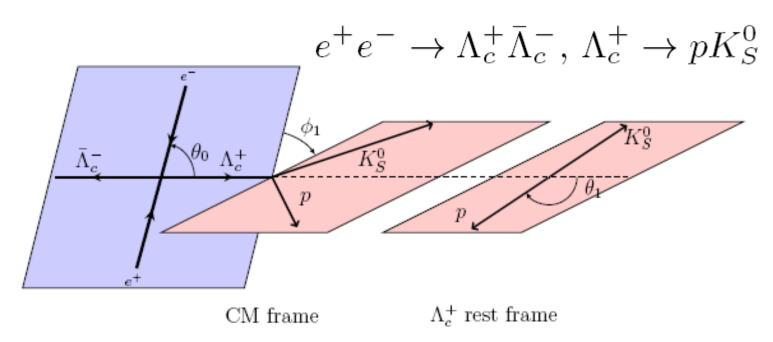
A typical $J/\psi \rightarrow \Lambda$ Λ event


$J/\psi \rightarrow \Lambda \bar{\Lambda}$


1.3 B J/ψ events

First observation Λ polarization in $J/\psi \rightarrow \Lambda$ Λ Nature physics (2019) arXiv:1808.08917

$$\Delta\Phi = (42.4 \pm 0.6 \pm 0.5)^{\circ}$$

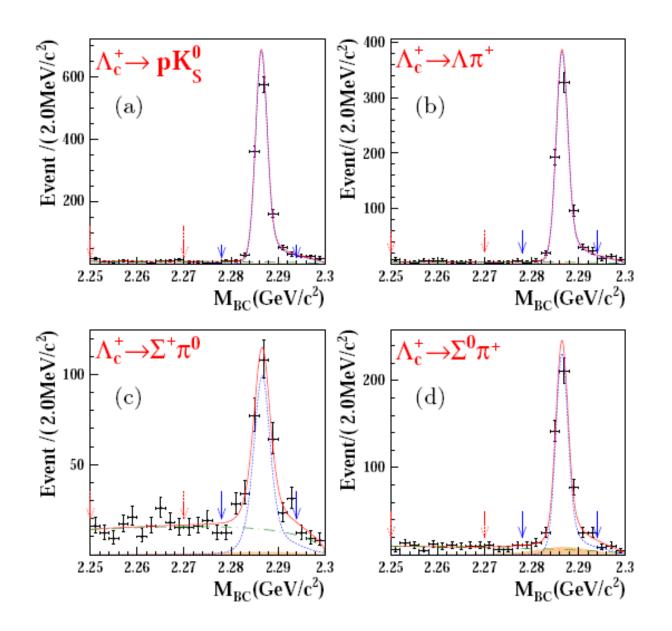


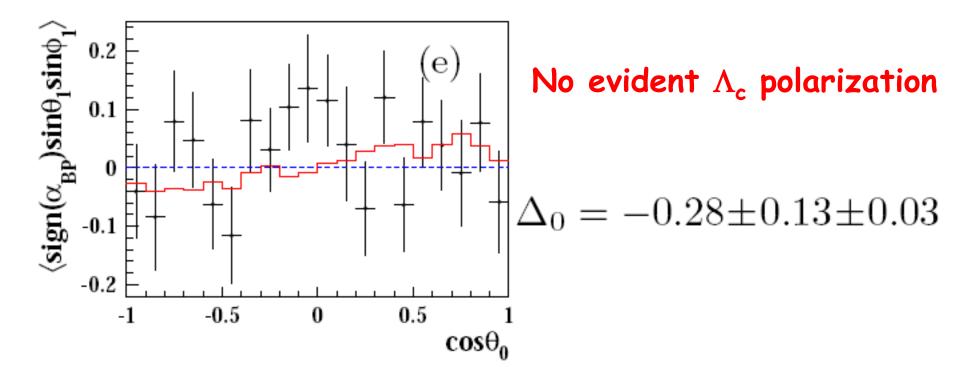
Decay asymmetry

$$A_{CP} = \frac{\alpha_- + \alpha_+}{\alpha_- - \alpha_+}$$

Parameters	This work	Previous results
α_{ψ}	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027 [25]
$\Delta \Phi$	$(42.4 \pm 0.6 \pm 0.5)^{\circ}$	_
α_	$0.750 \pm 0.009 \pm 0.004$	0.642 ± 0.013 [27]
α_{+}	$-0.758 \pm 0.010 \pm 0.007$	-0.71 ± 0.08 27
$\frac{\alpha_+}{\bar{\alpha}_0}$	$-0.692 \pm 0.016 \pm 0.006$	_
A_{CP}	$-0.006 \pm 0.012 \pm 0.007$	0.006 ± 0.021 [27]
$\bar{\alpha}_0/\alpha_+$	$0.913 \pm 0.028 \pm 0.012$	

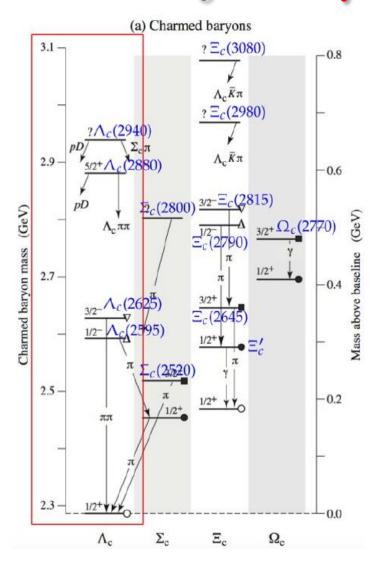
Λ_c decay asymmetry parameters




Goran Fald, arXiv:1709.0180

$$\frac{d\Gamma}{d\cos\theta_0 d\cos\theta_1 d\phi_1} \propto 1 + \alpha_0 \cos^2\theta_0 + \mathcal{P}_T \alpha_{pK_S^0}^+ \sin\theta_1 \sin\phi_1,$$

$$\mathcal{P}_T = \sqrt{1 - \alpha_0^2 \cos\theta_0 \sin\theta_0 \sin\Delta_0},$$

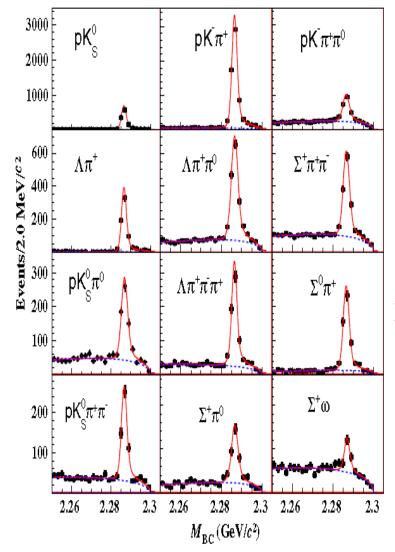

Ac signals 567fb-1 @4.6 GeV

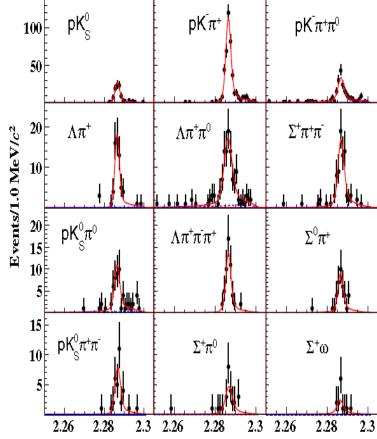
$\Lambda_c^+ \rightarrow$		pK_S^0	$\Lambda \pi^+$	$\Sigma^{+}\pi^{0}$	$\Sigma^0\pi^+$	
$\alpha_{BP}^{\Lambda_c^+}$	Predicted	-0.49 [17], -0.97 [18] -0.66 [19], -0.90 [30]	-0.70 [16], -0.67 [11] -0.95 [10], -0.99 [10] -0.96 [17], -0.95 [18] -0.99 [19], -0.86 [30] -0.99 [20], -0.94 [31]	0.71 [16], 0.92 [11] 0.79 [10] -0.49 [10] 0.83 [17], 0.43 [18] 0.39 [19], -0.76 [30] -0.31 [20], -0.47 [31]	0.70 [16], 0.92 [11] 0.78 [10], -0.49 [10] 0.83 [17], 0.43 [18] 0.39 [19], -0.76 [30] -0.31 [20], -0.47 [31]	
	PDG [2] This work	$0.18 \pm 0.43 \pm 0.14$	-0.91 ± 0.15 $-0.80 \pm 0.11 \pm 0.02$	-0.45 ± 0.32 $-0.57 \pm 0.10 \pm 0.07$	$-0.73 \pm 0.17 \pm 0.07$	
$\Delta_1^{BP}(\text{rad})$	This work		$3.0 \pm 2.4 \pm 1.0$	$4.1 \pm 1.1 \pm 0.6$	$0.8 \pm 1.2 \pm 0.2$	
β_{BP}	This work		$0.06^{+0.58}_{-0.47}^{+0.05}_{-0.06}$	$-0.66^{+0.46+0.22}_{-0.25-0.02}$	$0.48^{+0.35+0.07}_{-0.57-0.13}$	
γ_{BP}	This work		$-0.60^{+0.96+0.17}_{-0.05-0.03}$	$-0.48^{+0.45+0.21}_{-0.42-0.04}$	$0.49^{+0.35}_{-0.56}^{+0.07}_{-0.12}$	

$\Lambda_{\rm c}$ decay before 2014

- $\rightarrow \Lambda_c^+$ was observed in 1979
- > All decays of Λ_c^+ were measured with high energy data and relative to pK- π^+ , which suffers an error of 25%. No absolute measurement using threshold Λ_c^+ data
- > Only about 60% decays are known

A+ DECAY MODES	ı	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
Hadronic modes w	vith	a <i>p</i> : <i>S</i> = −1 fina	l states	
$p\overline{K}^0$		(2.3 ± 0.6) %		873
$pK^-\pi^+$	[a]	$(5.0 \pm 1.3)\%$		823
$p\overline{K}^*(892)^0$	[b]	$(1.6 \pm 0.5)\%$		685
$\Delta(1232)^{++}K^{-}$		(8.6 ± 3.0) \times	10-3	710
$\Lambda(1520)\pi^{+}$	[b]	$(1.8 \pm 0.6)\%$		627
$pK^-\pi^+$ nonresonant		(2.8 ± 0.8) %		823
$\rho \overline{K}^0 \pi^0$		(3.3 ± 1.0) %		823
$\rho \overline{K}^0 \eta$		$(1.2 \pm 0.4)\%$		568

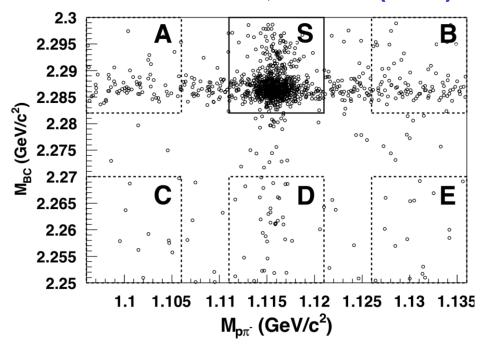

Systematic studies of Λ_c^+ , search for new decays, absolute BF measurements are important to explore Λ_c^+ decay mechanisms ¹⁶


$\Lambda_{\rm c}^+$ hadronic decays

DT: ~1000

BESIII, PRL116(2016)052001

ST: ~15000



Much better precision $M_{\rm BC}$ (GeV/ c^2)

Mode	This work (%)	PDG (%)
pK_S^0	$1.52 \pm 0.08 \pm 0.03$	1.15 ± 0.30
$pK^{-}\pi^{+}$	$5.84 \pm 0.27 \pm 0.23$	5.0 ± 1.3
$pK_S^0\pi^0$	$1.87 \pm 0.13 \pm 0.05$	1.65 ± 0.50
$pK_S^0\pi^+\pi^-$	$1.53 \pm 0.11 \pm 0.09$	1.30 ± 0.35
$pK^{-}\pi^{+}\pi^{0}$	$4.53 \pm 0.23 \pm 0.30$	3.4 ± 1.0
$\Lambda \pi^+$	$1.24 \pm 0.07 \pm 0.03$	1.07 ± 0.28
$\Lambda \pi^+ \pi^0$	$7.01 \pm 0.37 \pm 0.19$	3.6 ± 1.3
$\Lambda \pi^+ \pi^- \pi^+$	$3.81 \pm 0.24 \pm 0.18$	2.6 ± 0.7
$\Sigma^0\pi^+$	$1.27 \pm 0.08 \pm 0.03$	1.05 ± 0.28
$\Sigma^+\pi^0$	$1.18 \pm 0.10 \pm 0.03$	1.00 ± 0.34
$\Sigma^+\pi^+\pi^-$	$4.25 \pm 0.24 \pm 0.20$	3.6 ± 1.0
$\Sigma^+\omega$	$1.56 \pm 0.20 \pm 0.07$	2.7 ± 1.0

Absolute measurement of $\Lambda c \rightarrow \Lambda + anything$

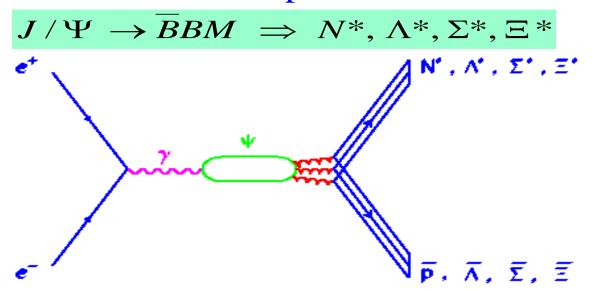
PRL 121, 062003 (2018)

PDG: (33±11)%

$$\mathcal{B}(\Lambda_c^+ \to \Lambda + X) = (38.2^{+2.8}_{-2.2} \pm 0.8)\%.$$

Sum of excl. decays: ~25%, 13% of them still unknown

$$\mathcal{A}_{CP} \equiv \frac{\mathcal{B}(\Lambda_c^+ \to \Lambda + X) - \mathcal{B}(\bar{\Lambda}_c^- \to \bar{\Lambda} + X)}{\mathcal{B}(\Lambda_c^+ \to \Lambda + X) + \mathcal{B}(\bar{\Lambda}_c^- \to \bar{\Lambda} + X)}$$


$$A_{cp} = (2.1^{+7.0}_{-6.6} \pm 1.4)\%$$

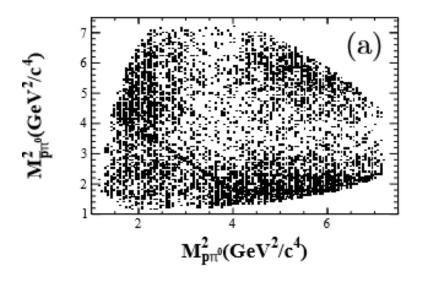
(No CPV is observed.)

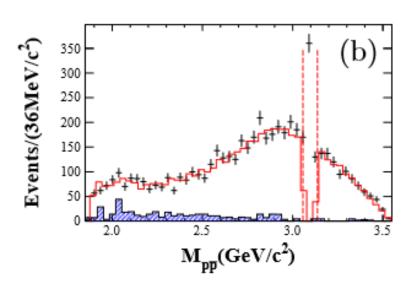
Baryon spectroscopy

- Non-relativistic quark model is successful in interpreting of the excited baryons
- Predicted more excited stated ("missing resonance problem")
- J/ψ (ψ') decays offers an window to search for the missing resonance

Ideal isospin filter

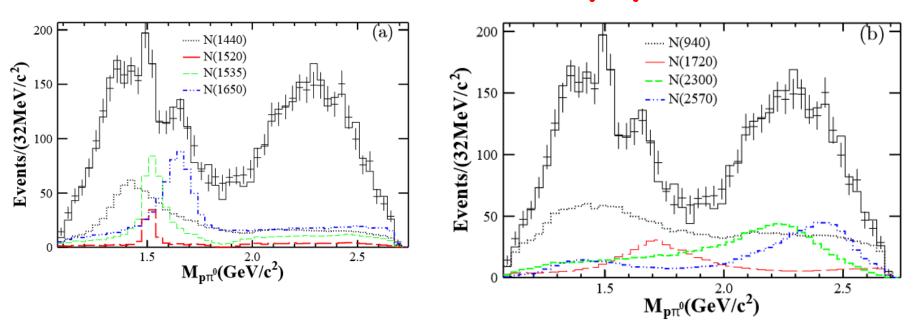
N* in $\psi' \rightarrow \pi^0 p p$


■ 2-body decay:


$$\psi(2S) \rightarrow X\pi^{0}, X \rightarrow p\bar{p}$$

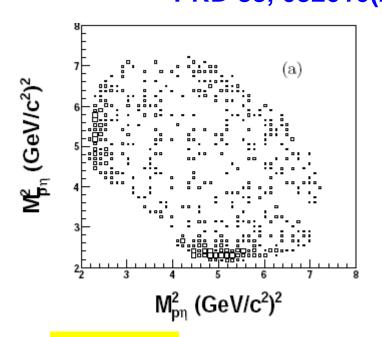
 $\psi(2S) \rightarrow p\bar{N}^{*}, \bar{N}^{*} \rightarrow \bar{p}\pi^{0} + \text{c.c.}$

106 M ψ' events


■ isospin conservation:

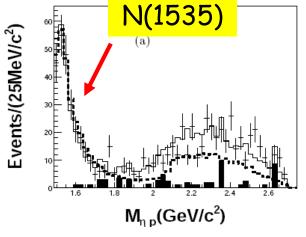
 Δ suppressed

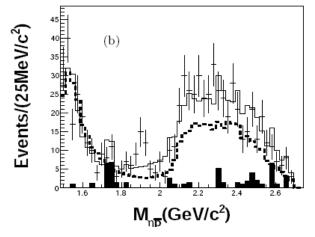
N* in $\psi' \rightarrow \pi^0 p \overline{p}$ 106 M ψ' events



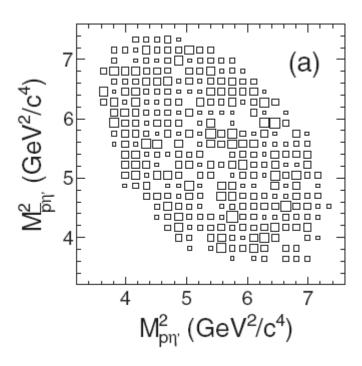
Two new baryonic excited states are observed!

Resonance	$M(MeV/c^2)$	$\Gamma({ m MeV}/c^2)$	ΔS	ΔN_{dof}	C.L.
N(1440)	$1390^{+11}_{-21}{}^{+21}_{-30}$	$340^{+46}_{-40}^{+70}_{-156}$	72.5	4	11.5σ
N(1520)	$1510^{+3}_{-7}^{+11}_{-9}$	$115^{+20}_{-15}^{+0}_{-40}$	19.8	6	5.0σ
N(1535)	$1535^{+9}_{-8}^{+15}_{-22}$	$120^{+20}_{-20}{}^{+0}_{-42}$	49.4	4	9.3σ
N(1650)	$1650^{+5}_{-5}^{+11}_{-30}$	$150^{+21}_{-22}{}^{+14}_{-50}$	82.1	4	12.2σ
N(1720)	$1700^{+30}_{-28}^{+32}_{-35}$	$450^{+109}_{-94}^{+149}_{-44}$	55.6	6	9.6σ
N(2300)	$2300^{+40}_{-30}^{+109}$	$340^{+30}_{-30}^{+110}_{-58}$	120.7	4	15.0σ
N(2570)	$2570^{+19}_{-10}{}^{+34}_{-10}$	$250^{+14}_{-24}{}^{+69}_{-21}$	78.9	6	11.7σ

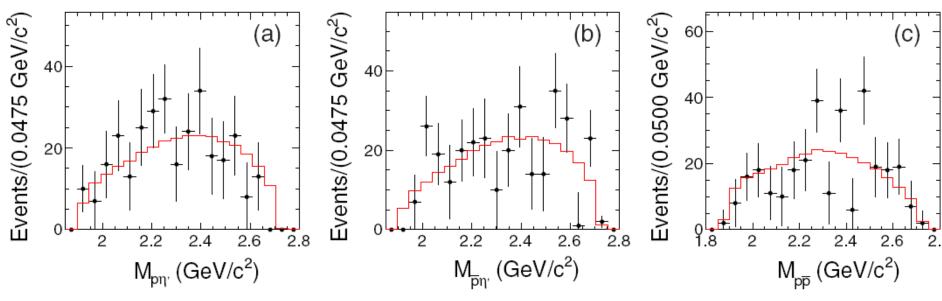

N* in $\psi' \rightarrow \eta p p$ PRD 88, 032010(2013)


106 M ψ' events




Mass: $1524 \pm 5^{+10}_{-4} \text{ MeV}/c^2$

Width: $130^{+27+57}_{-24-10} \text{ MeV}/c^2$

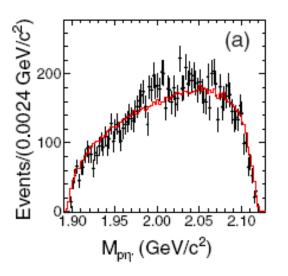


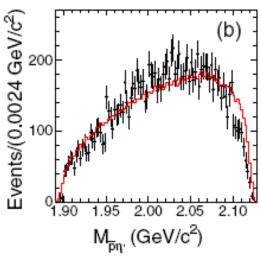
N* in $\psi' \rightarrow \eta' p p$

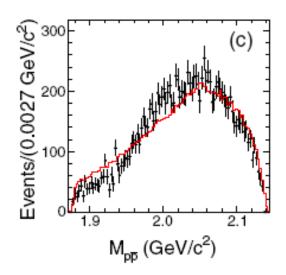
450 M ψ' events

Phys. Rev. D 99, 032006 (2019)

4.5 (c) -(γ) -(δ) -(γ) -(γ)

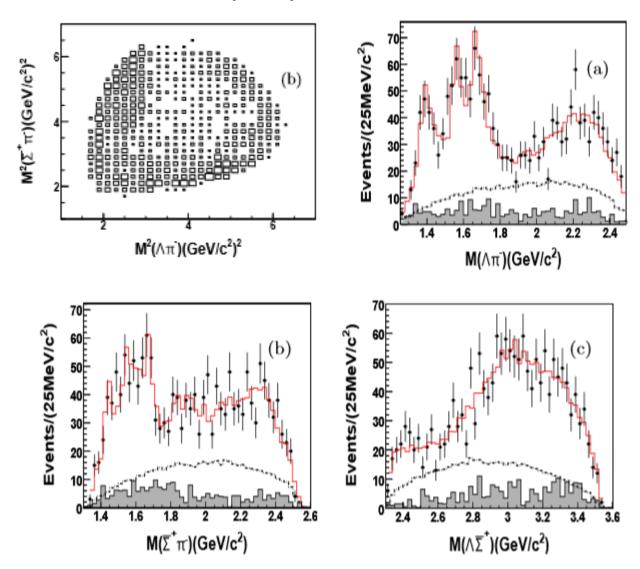

N* in $J/\psi \rightarrow \eta' p \bar{p}$


Phys. Rev. D 99, 032006 (2019)


No evident structures were observed

$$\mathcal{B}(J/\psi \to p\bar{p}\eta') = (1.26 \pm 0.02 \pm 0.07) \times 10^{-4}$$

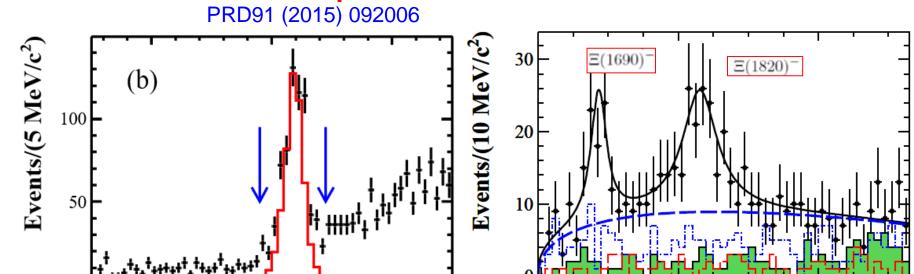
1.3 B J/ψ events



Σ *s, Λ *s in $\psi' \rightarrow \Lambda \Sigma \pi$

106 M ψ' events

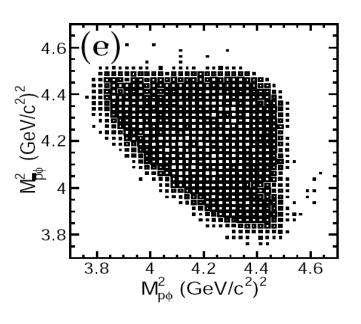
PRD 88, 112007 (2013)


Clear structures were observed

Ξ*s in ψ' \rightarrow KΛ Ξ

 $RM(K \land) (GeV/c^2)$

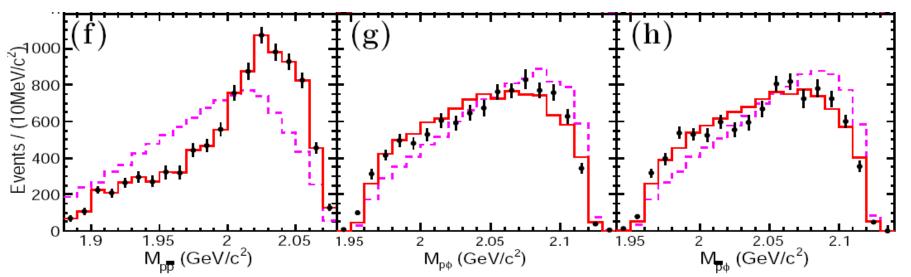
1.3


450 M ψ' events

	$\Xi(1690)^{-}$	$\Xi(1820)^{-}$
$M({ m MeV}/c^2)$	$1687.7 \pm 3.8 \pm 1.0$	$1826.7{\pm}5.5{\pm}1.6$
$\Gamma({ m MeV})$	$27.1 \pm 10.0 \pm 2.7$	$54.4 {\pm} 15.7 {\pm} 4.2$
Event yields	74.4 ± 21.2	136.2 ± 33.4
Significance(σ)	4.9	6.2
Efficiency(%)	32.8	26.1
$\mathcal{B} (10^{-6})$	$5.21{\pm}1.48{\pm}0.57$	$12.03 \pm 2.94 \pm 1.22$
$M_{ m PDG}({ m MeV}/c^2)$	1690 ± 10	1823 ± 5
$\Gamma_{\mathrm{PDG}}(\mathrm{MeV})$	< 30	24^{+15}_{-10}

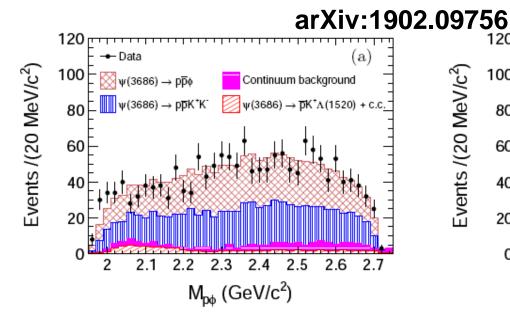
 $M(K^-\Lambda)$ (GeV/c²)

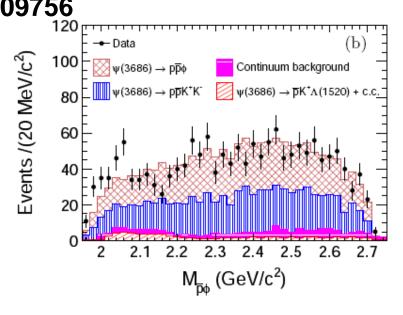
1.3 B J/ψ events

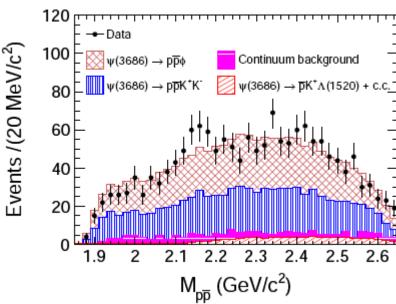


Search for exotics in $J/\psi \rightarrow \phi p$ p

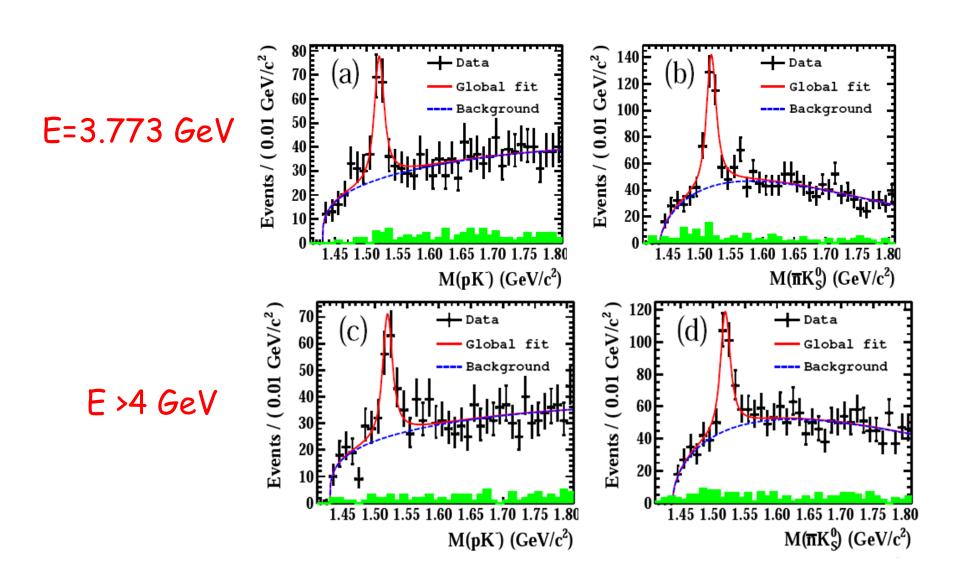
Phys. Rev. D 93, 052010 (2016)


- \blacksquare BESII: p \overline{p} mass threshold enhancement
- LHCb: Pc states

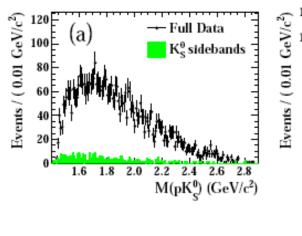

No evident enhancement observed

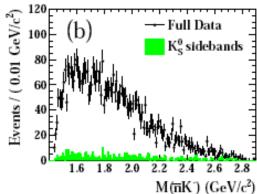

Search for exotics in $\psi' \rightarrow \phi p \bar{p}$

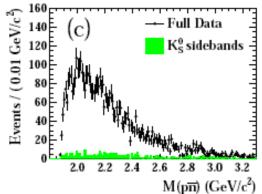
450 M ψ' events

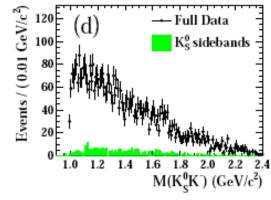


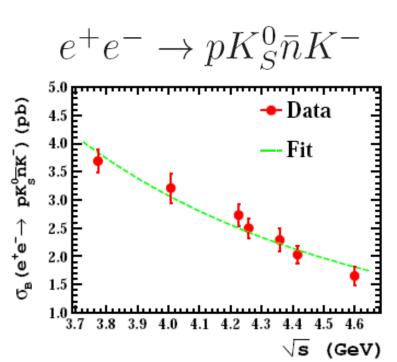
No evident enhancement observed




Hyperons in e+e- \rightarrow pKs nK^- @3.773 GeV and >4 GeV


Phys. Rev. D 98, 032014 (2018)




No evident peaks in mass spectra of pKs, $\overline{n}K^-$, \overline{p} \overline{n} , KsK

Summary& Prospects

- BESIII is successfully operating since 2008
 - World largest data samples at J/ψ , ψ' , ψ (3770), ψ (4040), Y(4260) already collected
 - ☐ Provides novel insights into baryon decays/spectroscopy
 - Offers complementary information to the other experiments
- Recent results are presented
 - Decay asymmetry parameters of Lambda/Lambdac
 - test of the fundamental symmetries
 - N*, Λ*, Σ*, Ξ*
 - Search for the exotic baryons

Summary& Prospects

- Till 2019 June: 10 billion J/ψ events, 0.45 billion ψ' events, >15fb⁻¹ above charm threshold
- Upgrades: CGEM → inner MDC tracker, BEPCII: Luminosity? 4.6 → 4.7 GeV ?
- BESIII: a unique place for baryon decays/spectroscopy
 - ✓ $J/\psi(\psi')\rightarrow \pi^0 p p, p n\pi, pK\Lambda,pK\Sigma...$
 - \checkmark Ω^* using the data above charm threshold
 - \checkmark Rare decays of baryons (Λ_c)
 - \checkmark Σ , Ξ polarizations in e+e- annihilations
- More results are expected to come soon!

Many thanks for your attention!