Different partial-wave analysis tools and recent results of the Jülich-Bonn model

Deborah Rönchen HISKP, Bonn University

NSTAR2019 – The 12th International Workshop on the Physics of Excited Nucleons June 12 2019, Bonn, Germany

Supported by DFG, NSFC HPC support by Jülich Supercomputing Centre

N^* and Δ^* spectrum in the past

- Most information from elastic or charge exchange πN scattering,
 e.g. Karlsruhe-Helsinki (KH), Carnegie-Mellon-Berkeley (CMB), George-Washington U (GWU)
- Theoretical predictions, e.g., from lattice calculations and quark models
 → "Missing resonance problem": above 1.8 GeV much more states are predicted
 than observed

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

Photoproduction: e.g. from JLab, ELSA, MAMI, GRAAL, SPring-8, ...

source: ELSA; data: ELSA, JLab, MAMI

Electroproduction:

- electroproduction of πN , ηN , KY, $\pi \pi N$
- access the Q^2 dependence of the amplitude, information on the internal structure of resonances

- enlarged data base with high quality for different final states
- (double) polarization observables
 - \rightarrow alternative source of information besides $\pi N \to X$
 - \rightarrow towards a complete experiment: unambiguous determination of the amplitude (up to an overall phase)

From experimental data to the resonance spectrum

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

Different modern analyses frameworks:

- unitary isobar models: unitary amplitudes + Breit-Wigner resonances MAID, Yerevan/JLab, KSU
- (multi-channel) K-matrix: GWU/SAID, BnGa (phenomenological), Gießen (microscopic Bgd)
- dynamical coupled-channel (DCC): 3d scattering eq., off-shell intermediate states ANL-Osaka (EBAC), Dubna-Mainz-Taipeh, Jülich-Bonn
- other groups: JPAC (high energies), Mainz-Tuzla-Zagreb PWA (MAID + fixed-t dispersion relations, L+P), Gent, truncated PWA

From experimental data to the resonance spectrum

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

Different modern analyses frameworks:

- unitary isobar models: unitary amplitudes + Breit-Wigner resonances MAID, Yerevan/JLab, KSU
- (multi-channel) K-matrix: GWU/SAID, BnGa (phenomenological), Gießen (microscopic Bgd)
- dynamical coupled-channel (DCC): 3d scattering eq., off-shell intermediate states ANL-Osaka (EBAC), Dubna-Mainz-Taipeh, Jülich-Bonn
- other groups: JPAC (high energies), Mainz-Tuzla-Zagreb PWA (MAID + fixed-t dispersion relations, L+P), Gent, truncated PWA

• ...

The SAID, MAID, BnGa and JüBo approaches

SAID PWA

based on Chew-Mandelstam K-matrix

- K-matrix elements parameterized as energy-dependent polynomials
- resonance poles are dynamically generated (except for the $\Delta(1232)$)
- masses, width and hadronic couplings from fits to pion-induced πN and ηN production
- photocouplings from photoproduction

Bonn-Gatchina (BnGa) PWA

Multi-channel PWA based on K-matrix (N/D)

- mostly phenomenological model
- resonances added by hand
- resonance parameters determined from large experimental data base: pion-, photon-induced reactions, 3-body final states

MAID PWA

unitary isobar model

- resonances as multi-channel Breit-Wigner amplitudes
- background: Born terms + Regge exchanges
- so far: masses, widths taken from PDG (upcoming: pole positions with L+P method)
- photo- and electroproduction of pions, etas and kaons

Jülich-Bonn (JüBo) DCC model

Lippmann-Schwinger eq. formulated in TOPT

- hadronic potential from effective Lagrangians
- photoproduction parameterized by energy-dependent polynomials
- resonances as s-channel states ("by hand"), dynamical generation possible
- resonance parameters determined from pionand photon-induced data

The SAID, MAID, BnGa and JüBo approaches

All four approaches:

- (some) coupled channel effects
- unitarity (2 body)

Differences:

(besides the details in the construction of the amplitude)

- underlying (chiral) Lagrangian or not
- channel space, degree of channel coupling
- data base: simultaneous fits, which properties are determined from which data
- energy range
- resonances dynamically generated/added "by hand" (model selection)
- fitting techniques, computational effort

Detailed comparison + joint analysis of new polarization data: EPJ A 52, 284 (2016)

- new polarization data for pion photoproduction included in SAID, BnGa, JüBo
 - \Rightarrow agreement between multipoles considerably improved
- similar analysis planned for eta photoproduction (Afternoon session on Tuesday)

 amplitudes are analytic functions of the invariant mass **Recent results**

Recent results:

- elastic πN PWA used as input by many other groups
 - covariance matrices for WI08 solution available (PRC 93 (2016) 065205)
 - XP15 solution: including new $\pi^\pm p o \pi^\pm p$ data (EPECUR, PRC 91 (2015) 025205,
- NN elastic PWA (PRC 94 065203 (2016))
- Pion photoproduction:
 - MA27 multipole analysis of $\gamma n
 ightarrow \pi^- p$
 - ightarrow first determination of photon decay amplitudes
 - $N^* \to \gamma n$ at the pole for $N(1440)1/2^+$, $N(1535)1/2^-$, $N(1650)1/2^-$, $N(1720)3/2^+$ (PRC 96 (2017) 035204)
 - Multipole analysis of E for $\gamma n \rightarrow \pi^- p$ (PRL 118 (2017) 242002) \rightarrow revised $\gamma n N^*$ couplings

Future plans:

- analysis of new (neutron-target) data
- new and more modern web interface

Talk by W. Briscoe on Wednesday

 $\substack{ \text{Re} \begin{bmatrix} \mathbf{E} & 0 \\ \mathbf{E} & -5 \\ 0 & -1 \\ -15 \end{bmatrix} \\ 10 \\ -15 \\ -$ (a) -20 ^{II}. 1080 1530 1980 2430 W (MeV) $\underset{c_{1}}{\operatorname{Im}}_{n}[\underset{c_{1}}{\operatorname{nE}}_{0+}\overset{1/2}{-}] (\underset{c_{1}}{\operatorname{am}})$ (b) 1080 1530 1980 2430 W (MeV)

see also PRC 93 (2016) 062201(R))

(maid.kph.uni-mainz.de, pwatuzla.com/p/mtz-collab.html)

MAID collaboration has widened: Mainz-Tuzla-Zagreb collaboration

Recent results:

- η , η' photoproduction: "EtaMAID2018" (EPJ A54 (2018) 210, talk by V. Kashevarov on Tuesday) 4 coupled channels: ηp , ηn , $\eta' p$, $\eta' n$ with up to 20 N* and Regge phenomenology
- Role of angle-dependent phase rotations of reaction amplitudes in $\gamma p \rightarrow \eta p$ (PR C98 (2018) 045206)
- Fixed-t analyticity as a constraint in SE PWA of meson photoproduction reactions (PR C97 (2018) 015207, talk by A. Svarc on Tuesday)

figure: EPJ A 54, 210. Red: EtaMAID2018. Black: S11

Future plans:

- SE PWA for γ, π^0 on the proton with fixed-t analyticity (publication in preparation)
- Update of PionMAID for πN photoproduction in full isospin
- Dispersion relations for γ, η and γ, π^0
- Resonance pole analysis and inelastic residues for $\gamma_{,\eta}$

See also talk by M. Gorshteyn on Wednesday 8

Recent developments BnGa

Recent results:

• photoproduction: $\gamma p \rightarrow \eta p$, $\eta' p$ all polarization observables included (PLB 785, 626) \rightarrow existence of $N(1895)1/2^-$ (talk by A. Sarantsev on Tuesday)

 $\gamma n
ightarrow {\cal K}^0 \Lambda^0$, ${\cal K}^0 \Sigma^0$ (CLAS), $\gamma p
ightarrow \pi^0 p \eta$ (MAMI)

- pionproduction: $\pi^- p \rightarrow \pi^+ \pi^- n$, $\pi^0 \pi^- p$ (HADES)
- PWA of $\Sigma\pi$ and K^-p interactions (arXiv:1905.05456, talk by E. Klempt on Thursday)

Future plans:

- analysis of new data
- extension to electroproduction

Recent developments Jülich-Bonn: extension to kaon photoproduction

• DCC analysis including $\gamma p \to K^+ \Lambda$ (EPJA 54, 110 (2018)) and $\gamma p \to K^+ \Sigma^0$, $K^0 \Sigma^+$ (preliminary)

Multipole amplitude $M^{IJ}_{\mu\gamma} = V^{IJ}_{\mu\gamma} + \sum_{\kappa} T^{IJ}_{\mu\kappa} G_{\kappa} V^{IJ}_{\kappa\gamma}$ $\gamma \sim \gamma N ; \mu, \kappa \sim mB$

• $V_{\mu\gamma}\sim$ energy-dependent polynomials

Hadronic amplitude

$$T^{IJ}_{\mu\nu} = V^{IJ}_{\mu\nu} + \sum_{\kappa} V^{IJ}_{\mu\kappa} G_{\kappa} T^{IJ}_{\kappa\nu}$$

 $\mu, \nu, \kappa \sim mB$

- potentials $V_{\mu\nu}$ constructed from effective \mathcal{L}
- t- and u-channel: "Background" (dynamical generation of poles possible)
- *s*-channel: genuine resonances (poles on the 2nd Riemann sheet)

• $\pi N \rightarrow X$: > 7,000 data points ($\pi N \rightarrow \pi N$: GW-SAID WI08 (ED solution))

• $\gamma N \rightarrow X$:

Reaction	Observables (# data points)	p./channel
$\gamma p \to \pi^0 p$	$d\sigma/d\Omega$ (18721), Σ (2927), P (768), T (1404), $\Delta\sigma_{31}$ (140),	
	G (393), H (225), E (467), F (397), $C_{x_1'}$ (74), $C_{z_1'}$ (26)	25,542
$\gamma p \to \pi^+ n$	$d\sigma/d\Omega$ (5961), Σ (1456), P (265), T (718), $\Delta\sigma_{31}$ (231),	
	G (86), H (128), E (903)	9,748
$\gamma p ightarrow \eta p$	$d\sigma/d\Omega$ (9112), Σ (403), P (7), T (144), F (144), E (129)	9,939
$\gamma p o K^+ \Lambda$	$d\sigma/d\Omega$ (2478), P (1612), Σ (459), T (383),	
	$C_{x'}$ (121), $C_{z'}$ (123), $O_{x'}$ (66), $O_{z'}$ (66), O_x (314), O_z (314),	5,936
$\gamma p ightarrow K^+ \Sigma^0$	$d\sigma/d\Omega$ (4271), P (422), Σ (280), T (127), $C_{x',z'}$ (188), $O_{x,z}$ (254)	5,542
$\gamma p ightarrow K^0 \Sigma^+$	$d\sigma/d\Omega$ (242), P (78)	320
	in total	57,027

• Fit paramters: - m_{bare} , f_{mBN*} (s-chan.), contact terms, couplings of polynomials $V_{\mu\gamma}$ - more than 900, calculations on JURECA supercomputer (JSC, JURECA:

General-purpose supercomputer at Jülich Supercomputing Centre, Journal of large-scale research facilities, 2, A62 (2016)]

• $\gamma p \to K^+ \Lambda$:

data: Paterson (CLAS) PRC 93, 065201 (2016), red line: fit JüBo2019

• $\gamma p \to K^+ \Lambda$:

data: Paterson (CLAS) PRC 93, 065201 (2016), red line: fit JüBo2019

•
$$\gamma p \rightarrow K^+ \Sigma^0$$
:

data: Paterson (CLAS) PRC 93, 065201 (2016), red line: fit JüBo2019

•
$$\gamma p \rightarrow K^+ \Sigma^0$$
:

data: Paterson (CLAS) PRC 93, 065201 (2016), red line: fit JüBo2019

Resonance spectrum

Resonance states: Poles in the *T*-matrix on the 2nd Riemann sheet

- Re(*E*₀) = "mass", -2Im(*E*₀) = "width"
- elastic πN residue $(|r_{\pi N}|, \theta_{\pi N \to \pi N})$, normalized residues for inelastic channels $(\sqrt{\Gamma_{\pi N}\Gamma_{\mu}}/\Gamma_{\text{tot}}, \theta_{\pi N \to \mu})$

• photocouplings at the pole: $\tilde{A}^{h}_{pole} = A^{h}_{pole}e^{i\vartheta^{h}}$, h = 1/2, 3/2

$$\begin{array}{l} I_{F}: \text{isospin factor} \\ q_{D} \ (k_{D}): \text{meson (photon) momentum at the} \\ \text{pole} \\ J = L \ \pm \ 1/2 \ \text{total angular momentum} \\ E_{0}: \text{pole position} \\ r_{\mathcal{H}}: \text{elastic } \pi N \ \text{residue} \\ A_{L}^{h} \\ \vdots \ \text{helicity multipole} \end{array}$$

$$\tilde{A}^{h}_{pole} = I_{F} \sqrt{\frac{q_{p}}{k_{p}} \frac{2\pi (2J+1) \mathsf{E}_{0}}{m_{N} \mathsf{r}_{\pi \mathsf{N}}}} \operatorname{Res} A^{h}_{L\pm}$$

In the present analysis ("JüBo2019", preliminary):

- all 4-star N and Δ states up to J = 9/2 are seen (exception: $N(1895)1/2^{-}$) + some states rated with less than 4 stars
- one additional s-channel diagram included: N(2000)5/2⁺
- more information on Δ states than in JüBo2017: γp → K⁺Σ⁰, K⁰Σ⁺ is mixed isospin

Δ (1910) 1/2 ⁺	Re E ₀	—21m <i>E</i> ₀	$ r_{\pi N} $	$\theta_{\pi N \to \pi N}$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{\text{tot}}}$	$\theta_{\pi N \to K \Sigma}$
* * **	[MeV]	[MeV]	[MeV]	[deg]	[%]	[deg]
JüBo2019	1873	346	0.6	178	5.4	12
JüBo2017	1798(5)	621(35)	81(68)	-87(18)	5.1(2.2)	-96(58)
PDG 2019	1860 ± 30	300 ± 100	25 ± 5	130 ± 50	7 ± 0.2	-110 ± 30

$\Delta(1700) \ 3/2^{-}$	Re E ₀	$-2 \text{Im } E_0$	$ r_{\pi N} $	$\theta_{\pi N \to \pi N}$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{\text{tot}}}$	$\theta_{\pi N \to K\Sigma}$
* * **	[MeV]	[MeV]	[MeV]	[deg]	[%]	[deg]
JüBo2019	1601	248	13	-2.4	0.83	171
JüBo2017	1667(28)	305(45)	22(6)	-8.6(32.1)	0.7(1.8)	176(152)
PDG 2019	1665 ± 25	250 ± 50	25 ± 15	-20 ± 20	—	_

Resonance spectrum: impact of the Λ decay parameter α_-

Advantage in KY photoproduction: self-analysing decay of the hyperons \rightarrow measurement of recoil polarization easier

- Λ decays weakly to $\pi^- p$ with decay parameter α_- (PDG average: $\alpha_- = 0.642 \pm 0.013$)
- recent BESIII measurement ($e^+e^- \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda}$): $\alpha_- = 0.750 \pm 0.009 \pm 0.004$ (Ablikim, Nature (2019))
 - \rightarrow polarizations affected by α_{-} are \sim 17% too large!

• independent estimation of α_{-} from $\gamma p \rightarrow K^{+}\Lambda$ CLAS data using Fierz identities $\Rightarrow \alpha_{-} = 0.721 \pm 0.006 \pm 0.005$ (Ireland et al. arXiv:1904.0761)

(→ Talk by D. Ireland on Thursday!)

Has impact on

- observables P, T, C_x , C_z , O_x , O_z
- reactions $\gamma p \to K^+ \Lambda$, $K^+ \Sigma^0 (\to K^+ \gamma \Lambda)$, $\pi^- p \to K^0 \Lambda$, $K^0 \Sigma^0$
- resonance spectrum? \Rightarrow JüBo re-fit to data scaled by new α_{-}

data: Paterson (CLAS) PRC 93, 065201 (2016)

(preliminary)

Most resonances very stable, example:

N(1720) 3/2 ⁺	Re E ₀	$-2 \text{Im } E_0$	$ r_{\pi N} $	$\theta_{\pi N \to \pi N}$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{\text{tot}}}$	$\theta_{\pi N \to K \Sigma}$
* * **	[MeV]	[MeV]	[MeV]	[deg]	[%]	[deg]
JüBo2019	1731	233	12	-85	4.1	50
Re-fit $\alpha_{-} = 0.721$	1730	233	12	-85	4.1	50

Some exceptions, also among the well established states:

$\Delta(1910) \ 1/2^+$	Re E ₀	$-2 \text{Im } E_0$	$ r_{\pi N} $	$\theta_{\pi N \to \pi N}$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{\text{tot}}}$	$\theta_{\pi N \to K\Sigma}$
* * **	[MeV]	[MeV]	[MeV]	[deg]	[%]	[deg]
JüBo2019	1873	346	0.6	178	5.4	12
Re-fit $\alpha_{-} = 0.721$	1859	303	4.4	129	14	-165
					1/2_1/2	
$\Delta(1700)$ $3/2^-$	Re E ₀	$-2 \text{Im } E_0$	$ r_{\pi N} $	$\theta_{\pi N \to \pi N}$	$\frac{\frac{\Gamma_{\pi N} \Gamma_{K \Sigma}}{\Gamma_{\text{tot}}}$	$\theta_{\pi N \to K \Sigma}$
* * **	[MeV]	[MeV]	[MeV]	[deg]	[%]	[deg]
JüBo2019	1601	248	13	-2.4	0.83	171
Re-fit $\alpha_{-} = 0.721$	1647	265	7.1	-24	0.43	175

(preliminary)

Photocouplings at the pole less stable:

N(1720) 3/2 ⁺	A ^{1/2} pole	$\vartheta^{1/2}$	A ^{3/2} _{pole}	$\vartheta^{3/2}$
	$[10^{-3} \text{ GeV}^{-\frac{1}{2}}]$	[deg]	$[10^{-3} \text{ GeV}^{-\frac{1}{2}}]$	[deg]
JüBo2019	66	58	14	-71
Re-fit $\alpha_{-} = 0.72$	59	65	20	-65

Δ (1910) 1/2 ⁺	A ^{1/2} _{pole}	$\vartheta^{1/2}$	A ^{3/2} _{pole}	$\vartheta^{3/2}$
	$[10^{-3} \text{ GeV}^{-\frac{1}{2}}]$	[deg]	$[10^{-3} \text{ GeV}^{-\frac{1}{2}}]$	[deg]
JüBo2019	99	-77	-	-
Re-fit $\alpha_{-} = 0.72$	64	159	-	-

$\Delta(1700)$ $3/2^-$	A ^{1/2} _{pole}	$\vartheta^{1/2}$	A ^{3/2} _{pole}	$\vartheta^{3/2}$
	$[10^{-3} \text{ GeV}^{-\frac{1}{2}}]$	[deg]	$[10^{-3} \text{ GeV}^{-\frac{1}{2}}]$	[deg]
JüBo2019	96	-16	101	-44
Re-fit $\alpha_{-} = 0.72$	82	-14	87	-17

Summary

Extraction of the N^* and Δ spectrum from experimental data:

- new information from photoproduction data
- also electroproduction
- recent results from different PW analysis groups

Jülich-Bonn model:

- extension of the coupled-channel approach to kaon photoproduction
- $\gamma p \rightarrow K \Sigma$ especially interesting for I = 3/2 states
- impact of a new value of the Λ decay parameter α_{-} :
 - many resonances more or less stable
 - some exceptions with major changes in the resonance parameters
 - photo couplings at the pole more sensitive than other parameter

Future plans JüBo:

- electroproduction (already in progress)
- inclusion of the further channels, e.g. photoproduction on the neutron

Thank you for your attention!

Appendix

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$\langle L'S'p'|T^{J}_{\mu\nu}|LSp\rangle = \langle L'S'p'|V^{J}_{\mu\nu}|LSp\rangle + \\ \sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{J}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{J}_{\gamma\nu}|LSp\rangle$$

- potentials V constructed from effective L
- s-channel diagrams: T^P genuine resonance states
- t- and u-channel: T^{NP} dynamical generation of poles partial waves strongly correlated
- contact terms

The Jülich-Bonn DCC approach

Resonance states: Poles in the *T*-matrix on the 2nd Riemann sheet

 $\operatorname{Re}(E_0) = \text{``mass''}, -2\operatorname{Im}(E_0) = \text{``width''}$

- (2-body) unitarity and analyticity respected
- 3-body ππN channel:
 - parameterized effectively as $\pi\Delta$, σN , ho N
 - $\pi N/\pi\pi$ subsystems fit the respective phase shifts
 - ↓ branch points move into complex plane

- pole position E₀ is the same in all channels
- residues→ branching ratios

Photoproduction

Multipole amplitude

$${\cal M}^{IJ}_{\mu\gamma}={\cal V}^{IJ}_{\mu\gamma}+\sum_{\kappa}T^{IJ}_{\mu\kappa}G_{\kappa}{\cal V}^{IJ}_{\kappa\gamma}$$
(partial wave basis

 $m = \pi$. n. K. B = N. Δ . Λ

- $T_{\mu\kappa}$: Jülich hadronic T-matrix \rightarrow Watson's theorem fulfilled by construction \rightarrow analyticity of T: extraction of resonance parameters

Photoproduction potential: approximated by energy-dependent polynomials

$$\mathbf{V}_{\mu\gamma}(E,q) = \underbrace{\overset{\gamma}{\overset{}}_{N} \underbrace{\overset{m}{\overset{}}_{P_{i}^{NP}}}_{N} B}_{N} + \underbrace{\overset{\gamma}{\overset{}}_{P_{i}^{P}} \underbrace{\overset{N^{*}, \Delta^{*}}{\overset{}}_{P_{i}^{P}}}_{N} B}_{N} = \frac{\tilde{\gamma}_{\mu}^{a}(q)}{m_{N}} \boldsymbol{P}_{\mu}^{NP}(E) + \sum_{i} \frac{\gamma_{\mu;i}^{a}(q) \boldsymbol{P}_{i}^{P}(E)}{E - m_{i}^{b}}$$

 $\tilde{\gamma}^a_{\mu'} \gamma^a_{\mu;i}$: hadronic vertices \rightarrow correct threshold behaviour, cancellation of singularity at $E = m^b_i$ $\rightarrow \gamma^a_{\mu;i}$ affects pion- and photon-induced production of final state mB

i: resonance number per multipole; μ : channels πN , ηN , $\pi \Delta$, KY

22

Combined analysis of pion- and photon-induced reactions

Simultaneous fit

Fit parameters:

• $\pi N \rightarrow \pi N$ $\pi^- p \rightarrow \eta n, \ K^0 \Lambda, \ K^0 \Sigma^0, \ K^+ \Sigma^ \pi^+ p \rightarrow \ K^+ \Sigma^+$

- \Rightarrow 134 free parameters
 - 11 N^* resonances × (1 m_{bare} + couplings to πN , ρN , ηN , $\pi \Delta$, $K\Lambda$, $K\Sigma$)
 - + 10 Δ resonances \times (1 m_{bare} + couplings to πN , ρN , $\pi \Delta$, $K\Sigma$)
- contact terms: one per partial wave, couplings to πN , ηN , $(\pi \Delta)$, $K\Lambda$, $K\Sigma \Rightarrow 61$ free parameters
- $\gamma p \rightarrow \pi^0 p, \pi^+ n, \eta p, K^+ \Lambda$: couplings of the polynomials $\Rightarrow 566$ free parameters

 \Rightarrow 761 in total, calculations on the JURECA supercomputer [Jülich Supercomputing Centre, JURECA: General-purpose supercomputer at Jülich Supercomputing Centre, Journal of Large-scale research facilities, 2, A62 (2016)]

• t- & u-channel parameters: fixed to values of hadronic DCC analysis (JüBo 2013)

Uncertainties of extracted resonance parameters

Challenges in determining resonance uncertainties, e.g.:

- elastic *π*N channel: not data but GWU SAID PWA
 - \rightarrow correlated χ^2 fit including the covariance matrix $\hat{\Sigma}$ (available on SAID webpage!) PRC 93, 065205 (2016)

$$\chi^{2}(A) = \chi^{2}(\hat{A}) + (A - \hat{A})^{T} \hat{\Sigma}^{-1}(A - \hat{A})$$

 $A \sim {\rm vector} ~{\rm of} ~{\rm fitted} ~{\rm PWs}, \hat{A} \sim {\rm vector} ~{\rm of} ~{\rm SAID} ~{\rm SE} ~{\rm PWs}$

ightarrow same χ^2 as fitting to data up to nonlinear and normalization corrections

- error propagation data → fit parameters → derived quantities: bootstrap method: generate pseudo data around actual data, repeat fit
- model selection, significance of resonance signals: determine minimal resonance content using Bayesian evidence [PRL 108, 182002; PRC 86, 015212 (2012)]

or the LASSO method [PRC 95, 015203 (2017); J. R. Stat. Soc. B 58, 267 (1996)]:

$$\chi_T^2 = \chi^2 + \lambda \sum_{i=1}^{i_{max}} |a_i|$$

 $\lambda \sim$ penalty factor, $a_i \sim$ fit parameter

In JüBo framework: such methods are nummerically challenging, but planned for the (near) future

Estimation of uncertainties of extracted resonance parameters in the present study:

- from 9 re-fits to re-weighted data sets
- individually increase the weight in each reaction channel
- extract resonance parameters from refits
- maximal deviation of resonance parameters of the refits = "error"
- only a qualitative estimation of relative uncertainties, absolute size not well determined

Polynomials:

$$P_{i}^{P}(E) = \sum_{j=1}^{n} g_{i,j}^{P} \left(\frac{E - E_{0}}{m_{N}}\right)^{j} e^{-g_{i,n+1}^{P}(E - E_{0})}$$
$$P_{\mu}^{NP}(E) = \sum_{j=0}^{n} g_{\mu,j}^{NP} \left(\frac{E - E_{0}}{m_{N}}\right)^{j} e^{-g_{\mu,n+1}^{NP}(E - E_{0})}$$

-
$$E_0 = 1077 \text{ MeV}$$

- $g_{i,j}^{P}, g_{\mu,j}^{NP}$: fit parameter
- $e^{-g(E-E_0)}$: appropriate
high energy behavior
- $n = 3$

◀ back

The scattering potential: s-channel resonances

$$V^{\mathsf{P}} = \sum_{i=0}^{n} \frac{\gamma^{a}_{\mu;i} \gamma^{c}_{\nu;i}}{z - m^{b}_{i}}$$

- i: resonance number per PW
- $\gamma_{\nu;i}^{c}$ ($\gamma_{\mu;i}^{a}$): creation (annihilation) vertex function with **bare coupling** *f* (free parameter)

L

- z: center-of-mass energy
- m_i^b : bare mass (free parameter)

	Vertex	\mathcal{L}_{int}
• $J \leq 3/2$:	$N^*(S_{11})N\pi$	$\frac{f}{m_{\pi}} \bar{\Psi}_{N^*} \gamma^{\mu} \vec{\tau} \partial_{\mu} \vec{\pi} \Psi + \text{h.c.}$
(() from offerting ($N^*(S_{11})N\eta$	$\frac{f}{m_{\pi}} \bar{\Psi}_{N^*} \gamma^{\mu} \partial_{\mu} \eta \Psi + \text{h.c.}$
$\gamma_{ u;i}$ ($\gamma_{\mu;i}$) from effective ${\cal L}$	$N^*(S_{11})N\rho$	$f \bar{\Psi}_{N^*} \gamma^5 \gamma^\mu \vec{\tau} \vec{\rho}_\mu \Psi + \text{h.c.}$
	$N^*(S_{11})\Delta\pi$	$\frac{f}{m\pi} \bar{\Psi}_{N^*} \gamma^5 \vec{S} \partial_\mu \vec{\pi} \Delta^\mu + \text{h.c.}$

•
$$5/2 \le J \le 9/2$$
:

correct dependence on L (centrifugal barrier)

$$(\gamma^{a,c})_{\frac{5}{2}-} = \frac{k}{M} (\gamma^{a,c})_{\frac{3}{2}+} \qquad (\gamma^{a,c})_{\frac{5}{2}+} = \frac{k}{M} (\gamma^{a,c})_{\frac{3}{2}-} (\gamma^{a,c})_{\frac{7}{2}-} = \frac{k^2}{M^2} (\gamma^{a,c})_{\frac{3}{2}-} \qquad (\gamma^{a,c})_{\frac{7}{2}+} = \frac{k^2}{M^2} (\gamma^{a,c})_{\frac{3}{2}-} (\gamma^{a,c})_{\frac{9}{2}-} = \frac{k^3}{M^3} (\gamma^{a,c})_{\frac{3}{2}+} \qquad (\gamma^{a,c})_{\frac{9}{2}+} = \frac{k^3}{M^3} (\gamma^{a,c})_{\frac{3}{2}-}$$

The scattering potential: *t*- and *u*-channel exchanges

	πΝ	ρΝ	ηΝ	$\pi\Delta$	σΝ	KΛ	ΚΣ
πΝ	$\begin{array}{l} \mathrm{N,}\Delta,\!(\pi\pi)_{\sigma},\\ (\pi\pi)_{\rho} \end{array}$	N, Δ, Ct., π, ω, a ₁	N, a ₀	Ν, Δ, ρ	Ν, π	Σ, Σ*, Κ*	$\begin{array}{l} \Lambda, \Sigma, \Sigma^*, \\ \mathrm{K}^* \end{array}$
ρΝ		N, Δ, Ct., ρ	-	Ν, π	-	-	-
ηΝ			N, f ₀	-	-	Κ*, Λ	Σ, Σ*, Κ*
$\pi\Delta$				Ν, Δ, ρ	π	-	-
σΝ					Ν, σ	-	-
ΚΛ						Ξ, Ξ*, f ₀ , ω, φ	Ξ, Ξ*, ρ
ΚΣ							Ξ, Ξ*, f ₀ , ω, φ, ρ

Free parameters: cutoffs Λ in the form factors: $F(q) = \left(\frac{\Lambda^2 - m_\chi^2}{\Lambda^2 + q^2}\right)^n$, n = 1, 2

J. Wess and B. Zumino, Phys. Rev. 163, 1727 (1967); U–G. Meißner, Phys. Rept. 161, 213 (1988); B. Borasoy and U–G. Meißner, Int. J. Mod. Phys. A 11, 5183 (1996).

• consistent with the approximate (broken) chiral $SU(2) \times SU(2)$ symmetry of QCD

Vertex	\mathcal{L}_{int}	Vertex	\mathcal{L}_{int}
$NN\pi$	$-rac{g_{NN\pi}}{m\pi}\Psi\gamma^5\gamma^\muec au\cdot\partial_\muec \pi\Psi$	ΝΝω	$-g_{NN\omega}ar{\Psi}[\gamma^{\mu}-rac{\kappa_{\omega}}{2m_{N}}\sigma^{\mu u}\partial_{ u}]\omega_{\mu}\Psi$
$N\Delta\pi$	$\frac{g_N \Delta \pi}{m_\pi} \bar{\Delta}^\mu \vec{S}^\dagger \cdot \partial_\mu \vec{\pi} \Psi + \text{h.c.}$	$\omega \pi \rho$	$rac{g_{\omega\pi ho}}{m_{\omega}}\epsilon_{lphaeta\mu u}\partial^{lpha}ec{ ho}^{eta}\cdot\partial^{\mu}ec{\pi}\omega^{ u}$
$\rho\pi\pi$	$-g_{ ho\pi\pi}(ec{\pi} imes\partial_\muec{\pi})\cdotec{ ho}^\mu$	$N\Delta\rho$	$-i\frac{g_{N\Delta\rho}}{m_{\rho}}\bar{\Delta}^{\mu}\gamma^{5}\gamma^{\mu}\vec{S}^{\dagger}\cdot\vec{\rho}_{\mu\nu}\Psi + \text{h.c.}$
ΝΝρ	$-g_{NN ho}\Psi[\gamma^{\mu}-rac{\kappa ho}{2m_{N}}\sigma^{\mu u}\partial_{ u}]ec{ au}\cdotec{ ho}_{\mu}\Psi$	ρρρ	$g_{NN ho}(ec{ ho}_{\mu} imesec{ ho}_{ u})\cdotec{ ho}^{\mu u}$
$NN\sigma$	$-g_{NN\sigma}ar{\Psi}\Psi\sigma$	ΝΝρρ	$\frac{\kappa_{\rho}g_{NN\rho}^{2}}{2m_{N}}\bar{\Psi}\sigma^{\mu\nu}\vec{\tau}\Psi(\vec{\rho}_{\mu}\times\vec{\rho}_{\nu})$
$\sigma\pi\pi$	$rac{g\sigma\pi\pi}{2m_\pi}\partial_\muec\pi\cdot\partial^\muec\pi\sigma$	$\Delta\Delta\pi$	$\frac{g_{\Delta\Delta\pi}}{m_{\pi}}\bar{\Delta}_{\mu}\gamma^{5}\gamma^{\nu}\vec{T}\Delta^{\mu}\partial_{\nu}\vec{\pi}$
$\sigma\sigma\sigma$	$-g_{\sigma\sigma\sigma}m_{\sigma}\sigma\sigma\sigma$	$\Delta\Delta\rho$	$-g_{\Delta\Delta\rho}\bar{\Delta}_{\tau}(\gamma^{\mu}-i\frac{\kappa_{\Delta\Delta\rho}}{2m_{\Delta}}\sigma^{\mu\nu}\partial_{\nu})$
			$\cdot ec{ ho}_{\mu} \cdot ec{T} \Delta^{ au}$
$NN ho\pi$	$rac{g_{NN\pi}}{m_{\pi}} 2g_{NN ho} \bar{\Psi} \gamma^5 \gamma^\mu \vec{\tau} \Psi (\vec{ ho}_\mu imes \vec{\pi})$	$NN\eta$	$-rac{g_{NN\eta}}{m_\pi}ar{\Psi}\gamma^5\gamma^\mu\partial_\mu\eta\Psi$
NNa ₁	$-rac{g_{NN\pi}}{m_\pi}m_{a_1}\bar{\Psi}\gamma^5\gamma^\muec{ au}\psi_\mu$	NNa ₀	$g_{NNa_0} m_\pi \bar{\Psi} \vec{\tau} \Psi \vec{a_0}$
$a_1 \pi \rho$	$-\frac{2g\pi a_{1}\rho}{m_{a_{1}}}[\partial_{\mu}\vec{\pi}\times\vec{a}_{\nu}-\partial_{\nu}\vec{\pi}\times\vec{a}_{\mu}]\cdot[\partial^{\mu}\vec{\rho}^{\nu}-\partial^{\nu}\vec{\rho}^{\mu}]$	$\pi\eta a_0$	$g_{\pi\eta a_0} m_\pi \eta \vec{\pi} \cdot \vec{a}_0$
	$+\frac{2g_{\pi a_1}\rho}{2m_{a_1}}[\vec{\pi}\times(\partial_{\mu}\vec{\rho}_{\nu}-\partial_{\nu}\vec{\rho}_{\mu})]\cdot[\partial^{\mu}\vec{a}^{\nu}-\partial^{\nu}\vec{a}^{\mu}]$		

Theoretical constraints of the S-matrix

Unitarity: probability conservation

- 2-body unitarity
- 3-body unitarity:

discontinuities from t-channel exchanges

→ Meson exchange from requirements of the S-matrix [Aaron, Almado, Young, Phys. Rev. 174, 2022 (1968)]

Analyticity: from unitarity and causality

- correct structure of branch point, right-hand cut (real, dispersive parts)
- to approximate left-hand cut \rightarrow Baryon *u*-channel exchange

