

Universiteti i Tiranës Fakulteti i Shkencave të Natyrës

Fellowship at the INFN, CMS group of Bari "Double Higgs (H) production at Run2-LHC"

III International Workshop on recent LHC Physics results and related topics in Tirana MSC Ilirjan Margjeka

- The Brout-Englert-Higgs mechanism (I, II)
- Higgs potential and Higgs self-coupling constant λ_{HHH}
- The SM HH production
- Double Higgs (HH) productions in term of BSM phenomenology
- Analysis techniques
- Recent results (Part I, II, III)
- New search channels
- Conclusions

The Brout-Englert-Higgs mechanism I

• Proposed in 1964 independently by Englert and Brout, Higgs, and also by Guralnik, Hagen, and Kibble as a solution to generate the gauge boson masses and explain the fermion masses.

• The mechanism is based on the concept of spontaneous symmetry breaking, a phenomenon observed in Nature, whenever individual ground states of a system do not satisfy the symmetries of the system itself.

• Spontaneous symmetry breaking is realized through the introduction of a complex scalar doublet of fields: $\Phi = \begin{pmatrix} \phi_+ \\ \phi_2 \end{pmatrix}$

- The field must be scalar to satisfy space isotropy
- The VEV v would be frame-independent and constant to satisfy space homogeneity ۰
- The hypercharge of the field is $Y_{\Phi} = 1$

• Its covariant derivative is:
$$D_{\mu} = \partial_{\mu} - igW_{\mu}^{i}\frac{\sigma}{2} - \frac{1}{2}ig'B_{\mu}$$

 $\mathcal{L}_{BEH} = (D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi) - V(\Phi^{\dagger}\Phi)$
 $V(\Phi^{\dagger}\Phi) = -\mu\Phi^{\dagger}\Phi + \lambda(\Phi^{\dagger}\Phi)^{2}$ where $\mu, \lambda > 0$

• All the doublets that satisfy the condition: $|\Phi|^2 = \frac{\mu^2}{2\lambda} = \frac{v^2}{2}$ are minima of these potential, and are connected through gauge transformations that change the phase of the field Φ but not its modulus.

• If the symmetry is spontaneously broken to the ground state parallel to the ϕ_0 component of the doublet, than, this specific ground state is still invariant under the $U(1)_{em}$ symmetry group. As a consequence, the field expansion around this minimum is written as:

$$\Phi(x) = \frac{1}{\sqrt{2}} exp\left[\frac{i\sigma_i \theta^i(x)}{v}\right] \begin{pmatrix} 0\\ v + H(x) \end{pmatrix}$$

• This corresponds to the presence of a scalar real massive field H and of three massless fields $\theta^{i}(x)$. The latter are expected as consequence of the Goldstone theorem.

• Such massless bosons are not observed in Nature. They can be removed with an $SU(2)_1$ transformation that consists in the choice of a specific gauge called unitary gauge:

$$\Phi(x) \to \Phi'(x) = \exp\left[-\frac{i\sigma_i\theta'(x)}{v}\right]\Phi(x) = \frac{1}{\sqrt{2}}\begin{pmatrix}0\\v+H(x)\end{pmatrix}$$

The Brout-Englert-Higgs mechanism II

• After the transformation, only the real scalar field H(x) remains and its quanta corre- spond to a new physical massive particle, the Higgs boson (H).

$$\mathcal{L}_{BEH} = \frac{1}{2} \partial_{\mu} H \partial^{\mu} H - \frac{1}{2} (2\lambda v^{2}) H^{2} \qquad \Rightarrow \text{ evolution of the Higgs scalar field} \\ + \left[\left(\frac{gv}{2} \right)^{2} W^{\mu +} W^{-}_{\mu} + \frac{1}{2} \frac{\left(g^{2} + g^{'2} \right) v^{2}}{4} Z^{\mu} Z_{\mu} \right] \left(1 + \frac{H}{v} \right)^{2} \Rightarrow \text{ the mass terms of the weak bosons} \\ + \lambda v H^{3} + \frac{\lambda}{4} - \frac{\lambda}{4} v^{4} \qquad \Rightarrow \text{ prediction of cubic and quartic}$$

self-interactions of the Higgs boson

Ilirjan Margjeka

III International Workshop, Tirana (Albania)

October 10th, 2018 4 / 18

Higgs potential and Higgs self-coupling constant λ_{HHH}

• The BEH potential can be rewritten in terms of a trilinear and a quadrilinear coupling as:

$$V = \frac{1}{2}m_{H}^{2}H^{2} + \frac{\lambda_{HHH}}{\lambda_{HHH}}VH^{3} + \frac{1}{4}\lambda_{HHHH}H^{4} - \frac{\lambda}{4v^{4}}, \quad \lambda_{HHH} = \lambda_{HHHH} = \frac{m_{H}^{2}}{2v^{2}} \approx 0.13$$

- Directly related to the parameters of the scalar potential
- Entirely determined from the Higgs boson mass, VEV.
- Their measurement thus represents a test of the validity and coherence of the SM.
- In contrast to the weak boson self-interactions, that have a gauge nature, the Higgs boson self-interactions are purely related to the scalar sector of the theory
- Responsible for the mass of the Higgs boson itself
- Their experimental determination is thus crucial to reconstruct the Higgs boson potential and explore the nature of the EWSB.
- Experimentally measuring of λ_{HHH} (HH-boson production), λ_{HHHH} is crucial for the mechanism of electroweak symmetry breaking.

The SM HH production

Main Higgs pair production mechanisms predicted from the SM, listed below in decreasing oder of their cross sections:

1)gluon fusion production $gg \rightarrow HH$:

Double Higgs (*HH*) productions in term of BSM phenomenology

• Gluon fusion $gg \rightarrow hh$ is the dominant Higgs (H) pair production mode.

 BSM contribution in order to enhance the *HH* cross section; COMBINATION OF DECAY CHANNELS ENSURES OPTIMAL COVERAGE OF BSM TOPOLOGIES

NON-RESONANT HH production:

 Extension of the SM Lagrangian with dimension 4 and 6 operators is one of the BSM implementation in order to enhance the HH cross section, which allows and requires anomalous Higgs (H) couplings constants:

$$\begin{split} \mathcal{L}_{HH} &= \frac{1}{2} \partial_{\mu} \partial^{mu} h - \frac{1}{2} m_{h}^{2} h^{2} - k_{\lambda} \lambda_{SM} v h^{3} \\ &- \frac{m_{t}}{v} \left(v + k_{t} h + \frac{c_{2}}{v} h h \right) \left(\bar{\mathfrak{t}}_{L} t_{R} + h.c. \right) \\ &+ \frac{\alpha_{s}}{12} \left(\mathbf{c_{lg}} h - \frac{c_{2g}}{2v} h h \right) G_{\mu\nu}^{A} G^{A\mu\nu} \end{split}$$

RESONANT *HH* production:

- Looking for a narrow resonance X with a mass m_X using the invariant mass spectrum m_{HH}
- Cross section is significantly enhanced on resonances (up to pb)

Well-motivated signatures according to several scenarios:

 Broad class of models predicting new scalars that can decay to HH and broad mass range to explore (MSSM: 250 < m_X < 350GeV, 2HDM: 250 < m_X < 1000GeV)

 Randall-Sundrum warped extra dimension (up to 3TeV!) ⇒ spin-0 radion or spin-2 KK graviton.

Analysis techniques

The usaged pf MC-frameworks helpfull for BSM phenomenology, calculation of cross sections and more:

- MadGraph5_aMC@NLO generates collision events. Processes can be simulated to LO accuracy for any user-defined Lagrangian and NLO accuracy in the case of QCD corrections to SM processes
- POHWEG-Box is able to produce HH production at NLO accuracy, too
- Parton showering and hadronization with Pythia-8.2.3.5
- Delphes-3.4.1 performs fast multipurpose detector response simulations, especially on LHC detectors. Meanwhile Geant4-10 is useful for full detector simulation analysis.
- Existence of theoretical models for NNLO accuracy range.

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Recent results (Part I)

• Analyses for different resonance

- ⁽⁰⁾ mass ranges for $HH \rightarrow 4b$ have been done:
 - Resolved: 4b jets used to reconstruct the $HH \rightarrow 4b$
 - Fully-merged: 2 large-area jets each identifying a boosted H → bb
 - Semi-resolved: 1 large-area jet and 2b jets

- Analyses for both resonant and non-resonant in 3 categories for $HH \rightarrow bb\tau\tau$ have been done:
 - Resolved: resolved 1 b-tag, 2 b-tag and boosted

< A >

III International Workshop, Tirana (Albania)

Recent results (Part II)

- Single CMS analysis for resonant and nonresonant production
- Signal extraction on $m_{bb}/m_{\gamma\gamma}$

- Single analysis for resonant and nonresonant production
- Based on MVA methods for signal extraction

Combinations of resonant HH-decay channels:

New search channels

• New search channels are being investigated, which are less sensitive and more challenging:

(1) $HH \rightarrow \tau \tau \tau \tau$ (2) $HH \rightarrow bbZZ$

where three channels are available:

(2.1) $HH \rightarrow bbl^+l^-\nu\nu$ (2.2) $HH \rightarrow bbl^+l^-l^+l^-$ (2.3) $HH \rightarrow bbl^+l^-qq$

The interest of our research group is based especially on the following production $HH: HH \rightarrow bbZZ$ and respective decay channel, where we would like to contribute on future HH production research:

$$HH \rightarrow bbZZ \left(I^+ I^- I^+ I^- \right)$$

Conclusions

 \bullet CMS has conducted extensive searches for the HH production for all sensitive channels, in large mass ranges and for both resonant and non-resonant modes

- All results consistent with SM backgrounds so far
- Combined observed (expected) limit~ 22(13)×SM
- New search channels are being investigated
- We are now switching toward processing rest of Run2 data (2017, 2018)
- Combination of HH analyses is necessary to improve the CMS sensitivity to HH production:
 - similar sensitivity to SM signal from many analyses
 - complementary coverage of BSM parameter space
- Checks of the phase space overlap and proper treatment of systematic uncertainties are a necessary step for a reliable combined result
- The combined limit is to date the most sensitive result to SM HH production:
 - combined limits on resonant production
 - combined limits on anomalous (trilinear) coupling
 - EFT parameter space explored using shape benchmark signals

 \bullet The combined results are statistically limited and expected to improve with larger datasets \Rightarrow a future goal for HL-LHC and FCC

 \Rightarrow The future topic of my PhD research together with my research team at the INFN, will be the following event *HH*: *HH* \rightarrow *bbZZ* and the respective decay channel, where we would like to contribute on future *HH* production:

$$HH \to bbZZ \left(I^+ I^- I^+ I^- \right)$$

Backup slides

Ilirjan Margjeka

III International Workshop, Tirana (Albania)

October 10th, 2018 14 / 18

Benchmark nr.	k_{λ}	k_{t}	c_2	c_g	c_{2g}
1	7.5	1.0	-1.0	0.0	0.0
2	1.0	1.0	0.5	-0.8	0.6
3	1.0	1.0	-1.5	0.0	-0.8
4	-3.5	1.5	-3.0	0.0	0.0
5	1.0	1.0	0.0	0.8	-1.0
6	2.4	1.0	0.0	0.2	-0.2
7	5.0	1.0	0.0	0.2	-0.2
8	15.0	1.0	0.0	-1.0	1.0
9	1.0	1.0	1.0	-0.6	0.6
10	10.0	1.5	-1.0	0.0	0.0
11	2.4	1.0	0.0	1.0	-1.0
12	15.0	1.0	1.0	0.0	0.0
\mathbf{SM}	1.0	1.0	0.0	0.0	0.0

- Each benchmark shape corresponds to a specific choice of the 5 EFT couplings
- The choice does not have a special physical meaning: it is only meant to represent a shape, not a special point in the EFT parameter space

MC generations: benchmark signal shapes (II)

Below I reproduced the benchmark signal shapes, generating several distributions (1000 events each) of double Higgs boson invariant mass M_{inv} (HH), in LO accuracy using as MC generator MadGraph5_aMC@NLO (MG5.aMC_v2.6.3.2), combining the values of the coupling coefficients from the SM extended Langrangian in the framework of the EFT:

Ilirjan Margjeka

III International Workshop, Tirana (Albania)

October 10th, 2018 16 / 18

(Credits: J. Baglio "Full NLO-QCD corrections to $gg \rightarrow HH$ ", HH Production at Colliders Workshop, 9/5/2018)

LO QCD (1-loop): Dominated by top-quark loops (Eboli, Marques, Novaes,

Natale, PLB 197 (1987) 269; Glover, van der Bij, NPB 309 (1988) 282; Dicus, Kao, Willenbrock, PLB 203 (1988) 457]

NLO QCD HTL (1-loop): +93% correction

[Dawson, Dittmaier, Spira, PRD 58 (1998) 115012]

- Toward full NLO QCD (2-loop):
 - \rightarrow NLOFT_{approx}, m_t -effects in real radiation: -10%

[Maltoni, Vryonidou, Zaro, JHEP 1411 (2014) 079]

 $\rightarrow \mathcal{O}(1/m_t^{12})$ terms in virtual amplitudes: $\pm 10\%$

[see e.g. Grigo, Hoff, Steinhauser, NPB 900 (2015) 412]

NNLO QCD HTL (2-loop): +20% on total cross section

[De Florian, Mazzitelli, PLB 724 (2013) 306; PRL 111 (2013) 201801]

■ Latest NNLO QCD: full NLO QCD + NNLO HTL + NNLO exact reals \Rightarrow +10% to +20% in distributions

[Grazzini, Heinrich, Jones, Kallweit, Kerner, Lindert, Mazzitelli, JHEP 1805 (2018) 059]

References

- The CMS Collaboration "Search for non-resonant Higgs pair-production in the $b\bar{b}b\bar{b}$ final state with the CMS detector" (2018/07/04)
- The CMS Collaboration "Search for resonant pair-production of Higgs bosons decaying to botoom quanrk-antiquark pairs in proton-proton collisions at 13 TeV" (2011/11/07)
- The CMS Collaboration "Search for Higgs pair-production in the final state containing two photonss and two bottom quarks in proton-proton collisions at $\sqrt{s} = 13$ TeV" (2017/07/06)

۲

- The CMS Collaboration "Search for resonant and non-resonant Higgs pair-production in the $b\bar{b}l\nu l\nu$ final state using 2016 data" (2017/03/26)
- The CMS Collaboration "Search for non-resonant Higgs pair-production in the $b\bar{b}\tau^+\tau^-$ final state using 2016 data" (2016/08/04)
- The CMS Collaboration "Search for resonant Higgs pair-production in the $b\bar{b}\tau^+\tau^-$ final state using 2016 data" (2016/08/04)