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Condensation at finite density in a QFT



Condensation thresholds

Expectation value 〈N〉 of the net particle number as a function of the
chemical potential µ at very low temperature (charged scalar field):
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• At critical values µn(L) one observes jumps from 〈N〉 = n−1 to 〈N〉 = n.

• The condensation thresholds µn(L) depend on the spatial extent L.



Connection of condensation thresholds and n-particle energies

• Grand canonical partition sum and grand potential:

Z = Tr e−β(Ĥ −µ N̂) = e−β Ω(µ)

• Low T : In each particle sector Z is governed by the minimal grand potential Ω(µ)

Ω(µ)
T→0−→



ΩN=0
min = 0 , µ ∈ [0, µ1]

ΩN=1
min = m − 1µ , µ ∈ [µ1, µ2]

ΩN=2
min = W2 − 2µ , µ ∈ [µ2, µ3]

ΩN=3
min = W3 − 3µ , µ ∈ [µ3, µ4]

. . .

• m: physical mass, W2: minimal 2-particle energy, W3: minimal 3-particle energy . . .

• Use continuity of Ω(µ) to relate the critical µn to m and the Wn.

F. Bruckmann, C. Gattringer, T. Kloiber, T. Sulejmanpasic, PRL 115, 231601 (2015)



Connection of condensation thresholds and n-particle energies

• Relations between the critical µn(L) and the minimal multi-particle energies:

m(L) = µ1(L) , W2(L) = µ1(L) + µ2(L) , ... Wn(L) =
n∑
k=1

µk(L)...

• The multi-particle energies are governed by low energy parameters.

• In particular their finite volume dependence can be related to scattering data.

(K. Huang & C.N. Yang, M. Lüscher .... )

Goal: Describe condensation thresholds µn(L) with scattering data.

Challenge: Non-perturbative calculation at finite µ.



Lattice field theory and worldline techniques



Quantum field theory with path integrals

Lattice path integral for quantum field theory:

〈O〉 =
1

Z

∫
D[φ] e −S[φ] O[φ] , Z =

∫
D[φ] e −S[φ]

• Introduce a space-time lattice Λ, replace φ(x) −→ φn, n ∈ Λ and discretize S[φ]

• Integral over all field configurations is defined as
∫
D[φ] ≡

∏
n

∫
dφn

Monte Carlo simulations:

• Generate field configurations φ(j), j = 1, 2...N distributed with P [φ(j)] ∝ e−S[φ(j)]

• Quantum mechanical expectation values become averages

〈O〉 =
1

N

N∑
j=1

O[φ(j)] + O
(

1/
√
N
)



Sign problem (complex action problem)

Scalar field lattice action at finite chemical potential µ

S[φ] =
∑
n∈Λ

[
(m2

b + 8) |φn|2 + λ |φn|4 −
3∑

ν=1

[
φ?nφn+ν̂ + φ?n+ν̂φn

]
−
[
e−µφ?nφn+4̂ + eµφ?

n+4̂
φn

]]

The Boltzmann factor is complex and does not have a probability interpretation:

1

Z
e−S[φ] ∈ C

No direct Monte Carlo simulation! ”Sign problem”

Idea: Solve the sign problem by transforming the path integral to new variables.



The idea of a worldline representation

• Lattice action: ( φn ∈ C , M2 = m2
b + 8 )

S =
∑
n

[
M2 |φn|2 + λ |φn|4

]
−
∑
n,ν

[
e−µ δν,4 φ?n φn+ν̂ + eµ δν,4 φx φ

?
n+ν̂

]

• Expand the nearest neighbor terms of e−S:∏
n,ν

exp
(
e−µ δν4 φ?n φn+ν̂

)
=
∏
n,ν

∞∑
jn,ν=0

(e−µ δν4)jn,ν

jn,ν !
(φ?n φn+ν̂)

jn,ν

• The integrals over the moments
∏

n,ν (φn φ
?
n+ν̂)

jn,ν can be solved.

• jn,ν (and jn,ν for other NN-term) turn into the new worldline degrees of freedom.



Worldline representation - final form

• The original partition function is mapped exactly to a sum over configurations
of the worldline variables jn,ν , jn,ν ∈ N0 with dn,ν ≡ jn,ν − jn,ν .

Z =
∑
{j,j}

W [ j, j ] C[ d ] e µβ ω[d]

• W [ j, j ]: Real and positive weight from radial d.o.f. and combinatorics.

• Constraints from integrating over the symmetry group (dn,ν = jn,ν − jn,ν):

C[ d ] =
∏
n

δ
(
~∇~dn

)
• Particle number N ⇔ temporal winding number ω[d] of dn,ν-flux:



Condensation thresholds and scattering data



Determination of the critical values µn

• Using worldlines we compute 〈N〉 as function of µ.

• Near the steps we fit 〈N〉 with a logistic function:

〈N〉 ∼ 1

1 + e−an(µ−µn)
+ n− 1

• The µn are obtained as fit parameters.

• From the µn(L) at different L we obtain

m(L) = µ1(L)

W2(L) = µ1(L) + µ2(L)

W3(L) = µ1(L) + µ2(L) + µ3(L)
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Cross-check for the interpretation of the thresholds

We compute m(L),W2(L) and W3(L) also in a conventional spectroscopy
calculation from 2-, 4-, and 6-point functions.
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The good agreement confirms the interpretation of the µn(L) in terms of multi-particle
energies, and their determination from the fits.



Finite volume analysis in 4d

Finite volume relations: (I = −8.914,J = 16.532)

(K. Huang, C.N. Yang, M. Lüscher, S.R. Beane, W. Detmold, M.J. Savage, S.R. Sharpe, M.T. Hansen)

m(L) = m∞ +
A

L
3
2

e−L m∞ ,

W2(L) = 2m+
4πa

mL3

[
1− a

L

I
π

+
( a
L

)2 I 2−J
π2

+O
( a
L

)3]
,

W3(L) = 3m+
12πa

mL3

[
1− a

L

I
π

+
( a
L

)2 I 2+J
π2

+O
( a
L

)3]
.

• From fitting the mass data we obtain m∞.

• In W2(L) we use m(L) for m on the rhs. and obtain a as a fit parameter.

• In W3(L) we use m(L) and a from W2(L) to ”predict” the 3-particle data.

For our couplings: m∞ = 0.168(1) (l.u.), a = −0.078(7) (l.u.), am∞ = −0.013(1)



Comparison of threshold data with the finite volume relations
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The good agreement shows that one can describe
condensation thresholds with scattering data.



Finite volume analysis in 2d

• 2-particle wave function and energy at zero total momentum: (p1 = −p2 ≡ p)

ψ(r) = e−ipr , W2(L) = 2
√
m(L)2 + p(L)2

• Quantization condition from boundary condition:

2 δ(p) = − pL ⇒ δ(p(L)) = − p(L)L/2 ≡ δ(L)

• 3-particle wave function and energy at zero total momentum: (p3 = −p1 − p2)

ψ(r) = e−ip1r1 e−ip2r2 , W3(L) =
3∑
j=1

√
m(L)2 + pj(L)2

• Two quantization conditions from boundary conditions:

2 δ(pj) = − pj L ⇒ pj(L) = − 2 δ(L)/L



Comparison of threshold data with the finite volume relations
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The good agreement shows that one can describe
condensation thresholds with scattering data.



Summary

• At low temperature the particle number develops condensation steps as function of µ.

• The critical values µn(L) are related to multi-particle energies.

(cross-checked with spectroscopy)

• The multi-particle energies and thus the µn(L) depend on scattering parameters.

• We explored the relation between condensation thresholds and scattering data using
worldline simulations of the φ4 field in 2 and 4 dimensions.

• In 4d we computed the scattering length from µ1(L) and µ2(L) and used it in the
relations for W3(L) to ”predict” the 3-particle energy and thus µ3(L).

• In 2d we computed the phase shift from µ1(L) and µ2(L) and used it in the relations
for W3(L) to ”predict” the 3-particle energy and thus µ3(L).

• In both 2d and 4d we obtained a satisfactory understanding of the µn(L)
from scattering data.

• Possible future work: Study QC2D and QCD with isospin chemical potential.


