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Introduction (generation of magnetic field)
• The Earth’s main magnetic field is generated and maintained 

against Ohmic loss by dynamo mechanism. This mechanism 
takes place in the outer core which contains liquid iron. The 
thermal and chemical convection of this electrically 
conducting fluid generated magnetic field described by the 
induction equation

where the magnetic diffusivity                ,     is electrical

conductivity

• Other mechanisms that have their contribution are 
differential rotation, nutation of the Earth’s axis and core-
mantle tidal coupling

• The geomagnetic field exhibits temporal variation on 
different timescales: from fraction of a second to millions of 
years. The main field discussed here constitutes more than 
90% of the total geomagnetic field and is mainly dipolar
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Introduction (time variation of magnetic field)

• The dipolar magnetic field generally varies 
in magnitude on a typical timescales from 
several years to centuries

• These gradual changes are collectively 
known as Secular Variation (SV)

• Over several years the SV exhibits a clear 
trend (purple solid lines)

• There are cases when the trend of SV 
changes abruptly in less than one year

• Such changes are known as jerks
• There is hypothesized the connection 

between jerks and corresponding abrupt 
changes in the velocity field at the CMB 
(Whaler et al., 2016)
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Introduction (time variation of magnetic field)

• The dipolar magnetic field generally varies 
in magnitude on a typical timescales from 
several years to centuries

• These gradual changes are collectively 
known as Secular Variation (SV)

• Over several years the SV exhibits a clear 
trend (purple solid lines)

• There are cases when the trend of SV 
changes abruptly in less than one year

• Such changes are known as jerks
• There is hypothesized the connection 

between jerks and corresponding abrupt 
changes in the velocity field at the CMB 
(Whaler et al., 2016)

Will focus on these epochs
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Why calculate the velocity at CMB?

• To study the convection in the bulk of the outer core 
(Bloxham and Gubbins, 1991)

• To make short-range prediction of SV (Beggan and Whaler, 
2010)

• To study the possible relation between the flow at CMB and 
the changes in Length of Day (LOD) (Hide et al., 1993)

• To study the mechanical coupling between the outer core 
and the mantle (Deleplace and Cardin, 2006)
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The induction equation (direct problem)

• The induction equation allows the calculation of     and its rate of 
change when the velocity field is known

• If     is the magnetic field in the i-th step then

• The calculation is carried over in the next step
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The induction equation (inverse problem)

• The inverse calculation is possible: the induction equation allows the 
calculation of     when the magnetic field is known

• In the Earth’s case, due to its internal structure, one cannot use all the 
information from the magnetic field

• Let discuss the characteristics of the magnetic field and velocity field 
at the CMB!
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Magnetic field at CMB
• The geomagnetic field outside the core is considered to be potential (the electric 

currents are negligible there)

• The geomagnetic field is expanded in spherical harmonics series

where c is the radius of the core and spherical coordinates are employed  

throughout

• Only the radial component of the magnetic field is continuous through the CMB!
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Velocity field at CMB

• The fluid in the outer core and CMB is considered to be and ideal 
conductor
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Velocity field at CMB

• The fluid in the outer core and CMB is considered to be and ideal 
conductor
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Velocity field at CMB

• The fluid in the outer core and CMB is considered to be and ideal 
conductor
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Velocity field at CMB

• The fluid in the outer core and CMB is considered to be and ideal 
conductor
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Velocity field at CMB

• The fluid in the outer core and CMB is considered to be and ideal 
conductor

• The fluid flow is two-dimensional (vr = 0)
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Velocity field at CMB

• The fluid in the outer core and CMB is considered to be and ideal 
conductor

• The fluid flow is two-dimensional (vr = 0)

• The fluid just beneath the CMB is essentially a boundary layer
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Velocity field at CMB

• The fluid in the outer core and CMB is considered to be and ideal 
conductor

• The fluid flow is two-dimensional (vr = 0)

• The fluid just beneath the CMB is essentially a boundary layer

Really complicated dynamics!
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Method (first step)

• Radial induction equation

• Nabla expanded:

• The divergence yields:
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Method (first step)

• Radial induction equation

• Nabla expanded:

• The divergence yields:

 r rB B v 

 ˆ ˆ ˆ
H Hr r r

r


     



1 1ˆ ˆ

sin
H

r r
 

  

 
  

 

  0.r H rB B v  
We work  with 
this equation
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Method (second step)

• The velocity is separated into a toroidal and poloidal constituent 
(Backus, 1986):

• Total velocity

• After substitution
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Method (second step)

• The velocity is separated into a toroidal and poloidal constituent 
(Backus, 1986):

• Total velocity

• After substitution 2 2
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Method (third step)

• There is only one equation, hence there is inherent non-uniqueness
• The expansion of the velocity field in spherical harmonics series resolves 

the non-uniqueness
• In spherical harmonics with complex coefficients

• The coefficients t and s are unknown

       

   

1 1

1 1 1 1

1 1 1 1

1 1 1 1

3 32 2

2 2 3 3

2 2 3 3

2 2

1 1

, ,

, ,

1 , , 1 ,

, , ,

l l

m m m mr
r l l r l l

l m l m

m mm m

l l l l

l m l m

a B a
B l g Y B l g Y

r t r

T t Y S s Y

   

   

 
   

       
   

 

 

 

223rd International Workshop on LHC results and related topics



Method (third step)
• Substitution into the radial induction equation

• Integration over the CMB
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Method (third step)

• Define the Elsasser and Gaunt matrices
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Method (third step)

• Define the Elsasser and Gaunt matrices
Elsasser
integral

Gaunt 
integral
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Method (third step)

• Define the Elsasser and Gaunt matrices

• In matrix form:  g Et Gs
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integral
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Method (third step)

• Define the Elsasser and Gaunt matrices

• In matrix form:

• Final version:  :
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Inversion of equations

• The Gauss coefficients are recovered from gufm1 model (Jackson et 
al., 2000). The model describes the magnetic field for the period 
1590-1990

• The Gauss coefficients for SV are calculated as the differences of 
consecutive monthly values

• The magnetic field is expanded up to maximal degree l1 = 6, while the 
toroidal and poloidal velocity fields up to l2 = l3 = 4

• The total number of equations is l1 (l1 + 2) = 48. the total number of 
unknowns is again 48 because l2 (l2 + 2)  = 24 and l3 (l3 + 2) = 24

• The system is determined and the recovered velocity field is unique
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Results
A typical velocity field at CMB
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Results
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Results
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May 1925

Results
Jerk 1925
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June 1925

Results
Jerk 1925
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July 1925

Results
Jerk 1925
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Results
Jerk 1978
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Results
Jerk 1978
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Conclusions

• Slow changes in the velocity field are observed reproducing the typical timescale 
of several years for the SV

• There are visible some structures especially under the South Atlantic and 
Indonesian Archipelago. Interestingly, these structures are related to well-known 
patterns of the geomagnetic field like the South Atlantic Anomaly (SAA)

• In some epochs when jerks have occurred, like 1925, 1969 and 1986 there are 
observed sharp changes in the velocity field at the CMB. In other epochs like 1933, 
1958 or 1978 there are not observed large changes in the velocity field

• This fact indicates: 1) jerks may not be related to the velocity field at the CMB as 
previously believed, but sharp changes in the magnetic field may be the result of 
other processes that occur in the outer core; 2) jerks may be related to small scale 
flows at the CMB

• In order to analyze point 2 we have to increase the degree of spherical harmonic 
expansion l 373rd International Workshop on LHC results and related topics
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