The Period of Simple Pendulum

Sergei Çelaj University of Tirana

Content

- I. Introduction
- II. Estimating the Pendulum Integral
 - i. Perturbation solution of the elliptic integral
 - ii. Convergent of John Wallis series
- III. Chaos
- rv. Trapezoidal Rule
 - v. Arithmetic-Geometrical Mean
- vi. Graphic interpretations
 - i. Interpretation of different amplitudes and large angles
 - ii. Dependence of momentum in function of time
 - iii. Variation of momentum by angle

VII. Conclusions

Introduction

Galileo Galilei

$$\ddot{\theta} + \omega_0^2 sin(\theta) = 0$$

Estimating the Pendulum Integral

Perturbation solution of the elliptic integral

$$T = 4\sqrt{\frac{l}{g}} \int_0^{\frac{\pi}{2}} \frac{d\phi}{\sqrt{1 - k^2 \sin^2 \phi}}$$

$$T = 4\sqrt{\frac{l}{g}} \int_0^{\frac{\pi}{2}} (1 + \frac{1}{2}k^2 \sin^2 \phi + \ldots + \frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot 2n} k^{2n} \sin^{2n} \phi) d\phi.$$

We stop at the first order of the serie, also with k we indicate the amplitude of the pendulum.

Convergent of John Wallis series

$$\lim_{N \to +\infty} \frac{1}{N} \sum_{n=1}^{N} k^{2n} \cdot \frac{\pi}{2^{2n}} \cdot \frac{(2n)!}{(n!)^2} = \lim_{N \to +\infty} \frac{\pi}{2N} = 0$$

We prove that the limit converge so we can get a approximate value for the period.

Chaos

$$\tau = \int_0^{\frac{\pi}{2}} \frac{d\phi}{\sqrt{1 - k^2 \sin^2 \phi}}$$

- 1. With *k* we indicate $\sin \frac{\theta_0}{2}$. We take $\theta_0 = \pi$.
- 2. For k = 1 the form $1 k^2 \sin^2 \phi$ transforms into $1 \sin^2 \phi = \cos^2 \phi$.
- 3. Now we will have a new integral as $\tau = \int_0^{\frac{\pi}{2}} \frac{d\phi}{\sqrt{\cos^2 \phi}} = \int_0^{\frac{\pi}{2}} \frac{d\phi}{\cos \phi}$. The solution of wich will be $\sec \frac{\pi}{2} \sec 0$.
- 4. But the $\sec \frac{\pi}{2} = \frac{1}{\cos \frac{\pi}{2}} = \lim \frac{1}{0}$ the integral diverge. So here we prove the chaos.

Trapezoidal Rule

- 1. Trapezoidal rule is a technique for approximating the definite integral.
- 2. The elliptic integral $\tau=\frac{T}{T_0}=\frac{2}{\pi}\int_0^{\frac{\pi}{2}}(1-k^2sin^2\phi)^{-1/2}d\phi$ can calculated based on this rule.
- 3. This rule has an error of $O(N^3)$, where N is number of parts.

Arithmetic-Geometrical Mean

$$a_n = \frac{1}{2}(a_{n-1} + b_{n-1})$$
$$b_n = \sqrt{a_{n-1}b_{n-1}}$$

Graphic Intepretation

Interpretation of different amplitudes and large angles

Dependence of momentum in function of time

Variation of momentum by the angle

Conclusions

- 1. Trapezoidal rule is a numerical method wich gives us a soluion to harmonic motion equation.
- 2. Arithmetic-Geometrical Mean gives a precised value of period with at least 10 digits.
- 3. Trapezoidal rule is less accurate then AGM method, with an difference of 4 digits.
- **4.** Chaos is reached at $\theta_0 = \pi$ and the period can not be measured.