The Period of Simple Pendulum

Sergei Çelaj
University of Tirana

Content

I. Introduction

II. Estimating the Pendulum Integral
i. Perturbation solution of the elliptic integral
ii. Convergent of John Wallis series
III. Chaos
Iv. Trapezoidal Rule
v. Arithmetic-Geometrical Mean
vi. Graphic interpretations
i. Interpretation of different amplitudes and large angles
ii. Dependence of momentum in function of time
iii. Variation of momentum by angle
viI. Conclusions

Introduction

Galileo Galilei

$$
\ddot{\theta}+\omega_{0}^{2} \sin (\theta)=0
$$

Estimating the Pendulum Integral

Perturbation solution of the elliptic integral

$$
\begin{gathered}
T=4 \sqrt{\frac{l}{g}} \int_{0}^{\frac{\pi}{2}} \frac{d \phi}{\sqrt{1-k^{2} \sin ^{2} \phi}} \\
T=4 \sqrt{\frac{l}{g}} \int_{0}^{\frac{\pi}{2}}\left(1+\frac{1}{2} k^{2} \sin ^{2} \phi+\ldots+\frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1)}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot 2 n} k^{2 n} \sin ^{2 n} \phi\right) d \phi .
\end{gathered}
$$

We stop at the first order of the serie, also with k we indicate the amplitude of the pendulum.

Convergent of John Wallis series

$$
\lim _{N \rightarrow+\infty} \frac{1}{N} \sum_{n=1}^{N} k^{2 n} \cdot \frac{\pi}{2^{2 n}} \cdot \frac{(2 n)!}{(n!)^{2}}=\lim _{N \rightarrow+\infty} \frac{\pi}{2 N}=0
$$

We prove that the limit converge so we can get a approximate value for the period.

Chaos

$$
\tau=\int_{0}^{\frac{\pi}{2}} \frac{d \phi}{\sqrt{1-k^{2} \sin ^{2} \phi}}
$$

1. With k we indicate $\sin \frac{\theta_{o}}{2}$. We take $\theta_{0}=\pi$.
2. For $k=1$ the form $1-k^{2} \sin ^{2} \phi$ transforms into $1-\sin ^{2} \phi=\cos ^{2} \phi$.
3. Now we will have a new integral as $\tau=\int_{0}^{\frac{\pi}{2}} \frac{d \phi}{\sqrt{\cos ^{2} \phi}}=\int_{0}^{\frac{\pi}{2}} \frac{d \phi}{\cos \phi}$. The solution of wich will be $\sec \frac{\pi}{2}-\sec 0$.
4. But the $\sec \frac{\pi}{2}=\frac{1}{\cos \frac{\pi}{2}}=\lim \frac{1}{0}$ the integral diverge. So here we prove the chaos.

Trapezoidal Rule

1. Trapezoidal rule is a technique for approximating the definite integral.
2. The elliptic integral $\tau=\frac{T}{T_{0}}=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}}\left(1-k^{2} \sin ^{2} \phi\right)^{-1 / 2} d \phi$ can calculated based on this rule.
3. This rule has an error of $O\left(N^{3}\right)$, where \mathbf{N} is number of parts.

Arithmetic-Geometrical Mean

$$
\begin{gathered}
a_{n}=\frac{1}{2}\left(a_{n-1}+b_{n-1}\right) \\
b_{n}=\sqrt{a_{n-1} b_{n-1}}
\end{gathered}
$$

Graphic Intepretation

Interpretation of different amplitudes and large angles

Dependence of momentum in function of time

Variation of momentum by the angle

Conclusions

1. Trapezoidal rule is a numerical method wich gives us a soluion to harmonic motion equation.
2. Arithmetic-Geometrical Mean gives a precised value of period with at least 10 digits.
3. Trapezoidal rule is less accurate then AGM method, with an difference of 4 digits.
4. Chaos is reached at $\theta_{0}=\pi$ and the period can not be measured.
