Scale invariance and symmetries in inflation

Jinn-Ouk Gong

Korea Astronomy and Space Science Institute
Daejeon 34055, Korea

Scale invariance in particle physics and cosmology
CERN, Geneva, Switzerland
28th January, 2019
Outline

1. Introduction
2. Scale invariance during inflation
3. Symmetries during inflation
4. Consequences and beyond
 - Non-Gaussian consistency relation
 - Spectral tilt of power spectrum
 - Extension to multi-field case
5. Conclusions
Scale invariance and symmetries in inflation

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Scale invariance during inflation</th>
<th>Symmetries during inflation</th>
<th>Consequences and beyond</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>2 Scale invariance during inflation</td>
<td>3 Symmetries during inflation</td>
<td>4 Consequences and beyond</td>
<td>5 Conclusions</td>
</tr>
<tr>
<td>4 Consequences and beyond</td>
<td>- Non-Gaussian consistency relation</td>
<td>- Spectral tilt of power spectrum</td>
<td>- Extension to multi-field case</td>
<td></td>
</tr>
</tbody>
</table>
Why are universal relations important?

- Relations to underlying principles behind phenomenology
- Independent of model detail
- Symmetries behind

Strong discriminator for different classes of models
Examples

- Squeezed limit of scalar bispectrum & power spectrum
 \[\lim_{q \to 0} \frac{B_R(q, k_1, k_2)}{P_R(q)} = (1 - n_R)P_R(k) \quad (k_1 \approx k_2 \equiv k) \]

- Similar relations also hold

Are such relations from symmetry?
Examples

- Squeezed limit of scalar bispectrum & power spectrum

\[\lim_{q \to 0} \frac{B_R(q, k_1, k_2)}{P_R(q)} = (1 - n_R)P_R(k) \quad (k_1 \approx k_2 \equiv k) \]

- Similar relations also hold

Are such relations from symmetry scale invariance?
What am I going to discuss?

Scale invariance in particle physics and cosmology

- Scale invariance during inflation?
- Relation to symmetries during inflation?
- Consequences and further idea?
1 Introduction

2 Scale invariance during inflation

3 Symmetries during inflation

4 Consequences and beyond
 - Non-Gaussian consistency relation
 - Spectral tilt of power spectrum
 - Extension to multi-field case

5 Conclusions
Scale invariance with gravity

Inclusion of gravity requires a dimensionful coupling

\[S = \int d^4 x \sqrt{-g} \frac{m_{\text{Pl}}^2}{2} R + S_{\text{matter}} \]

Scale invariance is broken from the beginning!
Quadratic action for cosmological perturbations

Spatial metric $g_{ij} = a^2(t)(e^h)_{ij}$ with $h_{ij} = 2H_L \delta_{ij} + \gamma_{ij} + \cdots$

$$S_2^{(s)} = \int d^4 x a^3 m_{pl}^2 \left[\dot{\mathcal{R}}^2 - \frac{(\nabla \mathcal{R})^2}{a^2} \right] \left(\epsilon \equiv -\frac{\dot{H}}{H^2} \ll 1 \right)$$

Canonical form with $d\tau = a dt$, $u \equiv z \mathcal{R}$ and $z \equiv a\dot{\phi}_0 / H$

$$S_2^{(s)} = \int d\tau d^3 x \frac{1}{2} \left[u'^2 - (\nabla u)^2 + \frac{z''}{z} u^2 \right] \equiv -m^2$$
Breaking of scale invariance

(Global) rescaling of coordinates x^μ and u (N.B. u has mass dim 1)

$$x^\mu \rightarrow e^\alpha x^\mu \quad \text{and} \quad u \rightarrow e^{-\alpha} u$$

Associated current is not conserved, but slightly broken

$$\partial_\mu j^\mu = \left(m^2 + \frac{1}{2} \frac{dm^2}{d\log \tau} \right) u^2 = O(\epsilon)$$
Current and Ward-Takahashi identities

- Action as a function of ϕ and $\partial_\mu \phi$: $S = \int d^4 x \mathcal{L}(\phi, \partial_\mu \phi)$
- Under $\phi \rightarrow \phi + \delta \phi$, $\delta S = \int d^4 x \Delta$ with $\partial_\mu j^\mu = \Delta$

WT identities i.t.o. connected Green's functions reads (e.g. Coleman 1985)

$$\frac{\partial}{\partial y^\mu} \left< T[j^\mu(y)\phi(x_1) \cdots \phi(x_n)] \right> = \left< T[\Delta(y)\phi(x_1) \cdots \phi(x_n)] \right>$$

$$- i\delta^{(4)}(y-x_1) \left< T[\delta \phi(x_1) \cdots \phi(x_n)] \right> - \cdots$$
1 Introduction

2 Scale invariance during inflation

3 Symmetries during inflation

4 Consequences and beyond
 - Non-Gaussian consistency relation
 - Spectral tilt of power spectrum
 - Extension to multi-field case

5 Conclusions
During inflation, space-time is almost de Sitter

1. Very special gravitational background
2. Symmetries we enjoy in dS:
 - GR: general coordinate invariance $x'^\mu \rightarrow x'^\mu + \xi^\mu$
 - Time-dependent: time translational symmetry is broken
 (EFT of inflation with Goldstone mode $\pi = -R/H$)
 - dS isometries: transformations that leave dS as dS
Isometries of dS

Special coordinate transformations that leave dS as dS

1. Translation: \(x^i \rightarrow x^i + a^i \)

2. Rotation: \(x^i \rightarrow x^i + \omega^i_j x^j \) with \(\omega^i_j = -\omega^j_i \)

3. Special conformal transformations:

\[
t \rightarrow t - 2H^{-1}(b \cdot x) \quad \text{and} \\
x^i \rightarrow x^i - b^i(-H^{-2} e^{-2Ht} + x^2) + 2(b \cdot x)x^i
\]

At the end of inflation (\(t \rightarrow \infty \)) time is not affected

✓ Dilatation: both time and spatial coord change as

\[
t \rightarrow t - H^{-1} \log(1 + \lambda) \quad \text{and} \quad x^i \rightarrow (1 + \lambda)x^i
\]

Again as \(t \rightarrow \infty \) only spatial coordinates matter
Scale invariance as a dS isometry

- Scale invariance is one of dS isometries, dilatation symmetry
- Departure from scale inv amounts to departure from perfect dS
- Scale inv manifests itself through appropriate perturbation

We need a good gauge choice
Different perturbations transform differently under $x^\mu \rightarrow x^\mu + \xi^\mu$, e.g. $\gamma_{ij} \rightarrow \gamma_{ij}$, so we can choose ξ^μ by setting specific variables zero.

Comoving gauge: $\delta \phi = 0$ and $\partial_j (h_{ij} - 2H_L \delta_{ij}) = 0$
Why dilatation is special in comoving gauge (or vice versa)

Under dilatation $x^i \to (1 + \lambda)x^i$, gauge conditions are invariant:

$$
\delta \phi \to \left(1 - \lambda x^k \partial_k\right)\delta \phi \\
h_{ij} - 2H_L \delta_{ij} \to \left(1 - \lambda x^k \partial_k\right) \left(h_{ij} - 2H_L \delta_{ij}\right)
$$

Form of metric remains intact under dilatation: residual symmetry, and e.g. $H_L = 0$ (flat gauge condition) is not preserved

$$
H_L \rightarrow \begin{cases}
H_L - \lambda (1 + x^i \partial_i H_L) & \text{(dilatation)} \\
H_L + \left[x^2 b^i - 2(b \cdot x)x^i\right] \partial_i H_L - 2(b \cdot x) & \text{(SCTs)}
\end{cases}
$$
1 Introduction

2 Scale invariance during inflation

3 Symmetries during inflation

4 Consequences and beyond
 - Non-Gaussian consistency relation
 - Spectral tilt of power spectrum
 - Extension to multi-field case

5 Conclusions
WT identities for \mathcal{R} with scale invariance

Integrating WT identity for n-point correlation function of \mathcal{R}

- Dilatation is an exact symmetry, so $\Delta = 0$
- Evaluated at the same time, $x_1^0 = x_2^0 = \cdots = x_n^0 \equiv t$

$$\langle [Q, \mathcal{R}(x_1) \cdots \mathcal{R}(x_n)] \rangle = -i \langle \delta \mathcal{R}(x_1) \cdots \mathcal{R}(x_n) \rangle \cdots - i \langle \mathcal{R}(x_1) \cdots \delta \mathcal{R}(x_n) \rangle$$

with $Q \equiv \int d^3 x f^0(t, x)$: dilatation charge
Why curvature perturbation is special

Q is the generator of transformation under dilatation: $\delta \phi = i[Q, \phi]$

$$\delta \mathcal{R} = -1 - x^i \partial_i \mathcal{R} \quad \delta \phi = -x^i \partial_i \phi \text{ for } \phi \in \{\gamma_{ij}\cdots\} \quad \rightarrow \langle Q\mathcal{R}(k) \rangle = \frac{i}{2} (2\pi)^3 \delta^{(3)}(k) + \text{real part}$$

1. -1 is the Goldstone nature of \mathcal{R}
2. Dilatation charge creates \mathcal{R} out of vacuum with $k \approx 0$
Lowest-order relation

Specifying to $n = 2$

- **LHS**: inserting 1-ptl excited state $P_{\mathcal{R}}^{-1/2} \mathcal{R}(k) |\Omega\rangle$ gives

 $$-i \langle \Omega | [Q, \mathcal{R}(k_1) \mathcal{R}(k_2)] |\Omega\rangle = \lim_{q \to 0} \frac{B_{\mathcal{R}}(q, k_1, k_2)}{P_{\mathcal{R}}(q)}$$

- **RHS**: using $\delta \mathcal{R} = -1 - x^i \partial_i \mathcal{R}$ gives (with $|k_1| \approx |-k_2| \equiv k$)

 $$-(3 + k_2 \cdot \nabla_{k_2}) \langle \mathcal{R}(k_1) \mathcal{R}(k_2) \rangle = (1 - n_{\mathcal{R}}) P_{\mathcal{R}}(k)$$

Equating LHS and RHS gives lowest-order nG consistency relation
Dilatation charge is not conserved so now \(\Delta \) term is included:

\[
\left\langle \left[i \int_{\tau_0}^{\tau} d\tau' \int d^3 y \left(m^2 + \frac{1}{2} \frac{dm^2}{d\log \tau'} \right) u^2(\tau', y), u(\tau, x_1) u(\tau, x_2) \right] \right\rangle
\]

This gives

\[
n_R = 3 + \frac{d \log |u_k|^2}{d \log \tau} + 4 \Im \left[\frac{u_k^*}{|u_k|^2} \int_{\tau_0}^{\tau} d\tau' \left(m^2 + \frac{1}{2} \frac{dm^2}{d\log \tau'} \right) u_k^2(\tau') \right]
\]

definition of \(n_R \)

\[
= 2 \left[2 - \log 2 - \gamma - \log(-k\tau) \right] \epsilon \eta \text{ with } \eta \equiv \dot{\epsilon}/(H \epsilon)
\]
Comoving gauge in multi-field inflation

1. **Spatial condition:** \(\partial_j (h_{ij} - 2H_L \delta_{ij}) = 0 \), the same

2. **Temporal condition:** \(\dot{\phi}_0 a \delta \phi^a = 0 \) (equiv to \(T^0_i = 0 \))
 - Decompose \(\delta \phi^a \) along and orthogonal to time evolution

\[
\delta \phi^a = \delta \phi^a_{\perp} + \dot{\phi}_0^a \pi \\
\text{with} \quad \dot{\phi}_0 a \delta \phi^a_{\perp} = 0
\]

- \(\dot{\phi}_0 a \delta \phi^a = \dot{\phi}_0^2 \pi = 0 \) means simply \(\pi = 0 \), so MS variables becomes

\[
\delta \phi^a - \frac{\dot{\phi}_0^a}{H} \left(H_L - \frac{\Delta}{3} H_T \right) = \delta \phi^a_{\perp} - \frac{\dot{\phi}_0^a}{H} \left(H_L - \frac{\Delta}{3} H_T - H \pi \right) \\
\equiv \mathcal{R} \text{ with } H_T = 0 \text{ & } \pi = 0
\]

1 d.o.f. in gravity, and \(n - 1 \) d.o.f. in matter
While $\delta \phi_{\perp}$ is orthogonal to time evolution, it can interact with \mathcal{R}

$$
\lim_{q \to 0} \frac{B_{\mathcal{R}}(k_1, k_2, q)}{P_{\mathcal{R}}(q)} = (1 - n_{\mathcal{R}})P_{\mathcal{R}}(k)
$$

$$
+ \lim_{q \to 0} \left[P_a(q) - \frac{P_{a\mathcal{R}}(q)}{P_{\mathcal{R}}(q)} - \sum_{b \neq a} \frac{P_{a b}(q)}{P_b(q)} \right]^{-1} \frac{P_{a\mathcal{R}}(q)}{P_{\mathcal{R}}(q)}
\times \left[B_{\mathcal{R}a}(k_1, k_2, q) - \frac{P_{a\mathcal{R}}(q)}{P_{\mathcal{R}}(q)} B_{\mathcal{R}}(k_1, k_2, q) \sum_{b \neq a} \frac{P_{a b}(q)}{P_b(q)} B_{\mathcal{R}b}(k_1, k_2, q) \right]
$$

- Existence of interactions imposes normalization factor
- No assumption except for weak interactions between $\delta \phi_{\perp}$'s
1. Introduction

2. Scale invariance during inflation

3. Symmetries during inflation

4. Consequences and beyond
 - Non-Gaussian consistency relation
 - Spectral tilt of power spectrum
 - Extension to multi-field case

5. Conclusions
Conclusions

- Scale invariance during inflation
 - Scale invariance is broken
 - But the breaking is not strong

- Symmetries during inflation
 - dS isometries that leave dS as dS
 - Scale invariance as one of dS isometries
 - Good gauge choice is necessary: comoving gauge

- Consequences and beyond
 - WT identities based on symmetries
 - Various consequences follow