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Hierarchy versus triviality




The triviality problem:




The triviality problem:

Scalars lead to Landau poles:
=> the theory 1s UV mcomplete

But trying to UV complete it results in the hierarchy problem
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But, we do not care about running masses because they do not change the

Gaussian UV fixed point. We simply measure them and let them run. Or equivalently,
relevant operators are anyway effectively zero in the UV.

So we don’t even need the chiral symmetry: point 1 becomes irrelevant in this case.



Asymptotic safety in 4D QFT



Gastmans et al 78
Weinberg 79
Peskin
Reuter, Wetterich
. Gawedski, Kupiainen
The BaSlC Zdea Kawai et al,
de Calan et al ’,
Litim
Morris

Weinberg used this as a basis for his proposal of UV complete theories

—

Gaussian IR fixed point => perturbative

Interacting UV fixed pint => finite anomalous dimensions

In a field theory replace 1/€ with 1/ => divergences of marginal

operators (which affect the fixed point), some cured



Categorise the possible content of a theory as follows:

Irrelevant operators: would disrupt the fixed point - therefore asymptotically safe theories
have to emanate precisely from UV fixed point where they are assumed zero (exactly
renormalizable trajectory)

Marginal operators: can be involved 1n determining the UV fixed point where they become
exactly marginal. Or can be marginally relevant (asymptotically free) or irrelevant.

Relevant operators: become “irrelevant” in the UV but may determine the IR fixed point.
Dangerously irrelevant operators: grow in both the UV and IR (common in e.g. SUSY)

Harmless relevant operators: shrink in both the UV and IR



Categorise the possible content of a theory as follows:

Irrelevant operators: would disrupt the fixed point - therefore asymptotically safe theories
have to emanate precisely from UV fixed point where they are assumed zero (exactly
renormalizable trajectory)

Marginal operators: can be involved 1n determining the UV fixed point where they become
exactly marginal. Or can be marginally relevant (asymptotically free) or irrelevant.

Relevant operators: become “irrelevant” in the UV but may determine the IR fixed point.
Dangerously irrelevant operators: grow in both the UV and IR (common in e.g. SUSY)

Harmless relevant operators: shrink in both the UV and IR

Note relevant or marginally relevant operators still have “infinities” at the FP - just as
quark masses, they still run at the FP just like any other relevant operator: but being
relevant they do not affect the FP. (By definition they become unimportant at in the UV.)



UV. v.1I.R. EP.

Caswell-Banks-Zaks fixed point:

Take QCD with SU(N¢) and N fermions but very large numbers of colours+flavours

Turns out C>0, B>0: theory has stable IR fixed point at o = B/C and unstable one in UV o =0

Otoz

U/C 8

Note perturbativity: — Bl (C
requires many fields (Veneziano limit) with Ny ~ 11N¢ /2

Familiar from weakly coupled supersymmetry where Np < 3Nc in N = 1 case



Cartoon of a would-be Interacting UV FP:

Again would have ...

O,oc = —Ba? + Cao?
But requires C<0, B<O0, this theory has stable IR fixed point at @ = 0 and unstable UV one at a = B/C

67504

At t -> infinity the coupling|ends up here (and fields have finite anomalous dimensions)

Again perturbativity would require Np =~ 11Npo / 2



Real situation requires several couplings to realise

Litim & Sannino ’14

Need to add scalars and Yukawa couplings:

L =T P+ Te (QiDQ) +y'Tr (QH Q) + Tr (9, H' 0" H)

—uTr [(HTH)?) — o (Tx [HTH))?,

H is an Nrp x N scalar

Initially have U(Ng)r, X U(Np)gr flavour symmetry



Quiver diagram for this model:

SU(NF)L

SU(N¢g) || SUNp)L | SUNg)r | spin
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Four ’t Hooft-like couplings - flow could 1n principle be four dimensional

g° N¢ y? N¢ N u Np W v N2
(4m)? (4m)>7 T (4m)2T T (4x)?

Qg —

but driven by the Yukawa we find 1D trajectories...

0.020 a'h



Along the critical-curve/exact-trajectory can parameterise the flow in terms of (t)
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At the fixed point it is arbitrarily weakly coupled, o= 0.4561¢, where €= NF
c

2



UV fixed point

1D exactly renormalisable trajectory!

Gaussian IR fixed point



Tetrad Model for the ASSM...
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SU2)r = [SU(2), @ SU(2)s]aiag

o Tetrad Model - focus on breaking SU(Nc) to SU(3) colour with new scalars ...

c.f. Gies, Jaeckel, Wetterich ‘04; Bond,
Litim; Bond, Hiller, Kowalska, Litim;
Gies, Rechenberger, Scherer, Zambelli;
Pelaggi, Plascencia, Salvio, Sannino,
Smirnov; Molinaro, Sannino, Wang;
Mann, Meffe, Sannino, Steele, Wang,
Zhang,
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o Tetrad Model - focus on breaking SU(Nc) to SU(3) colour with new scalars ...
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SU2)r = [SU(2), @ SU(2)s]aiag Zhang,
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> Weak breaking must then occur along the H-Higgs directions:

h; )
0
hd 11

21

13

>
o
—
ro
N\

\V)
\V)

23

> > > > > >
S>>
St oo+t o
>
QO
Sy = Ny
:+§2:+§2:+§;
>
QO

s
|
—
R

fEt+ o fgoge4go
>
£%&|
N\ N N
>
é%&|
N~
__

>
S
N\

31

W
[\

33

~

Ho)

© Assignment implies 9 pairs of Higgses one for each Yukawa coupling



© Explicit embedding looks like P-S with SU(N¢) x SU(2)r x SU(2)r — SU(3). x SU2)r, x U(1)y
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o Explicit embedding looks like P-S with SU(Ng) x SU(2)r x SU(2)r — SU3)e x SU(2)r x U(1)y

g 4
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o Little q’s required (by ch
under SU(2)R

iral symmetry) to remove the extra SU(2) doublets: (Nc-4) uncharged




And the couplings that do this are as follows:

removes excess quark colours:
Standard Yukawas masses remove 2 q’s S locks colour/flavour

~

Luver D Lxg + %Tr [(QH) ' @] %Tf [HTCH - %Tr[(g : (ﬂ — %Tr[(@ §T) q

— T [H'H]® — uoTr [H H HH] — 0T [HTH] T [ ST §)

~

—wn T [§1 8] wym [51.581- 5]

Note expect relatively light (TeV scale) g-states looking like “higgsinos”



And the couplings that do this are as follows:

removes excess quark colours:
Standard Yukawas masses remove 2 q’s S locks colour/flavour

~

Luvep DO Lkg + ETI“ [(QH) Q] + %Tr [HTCH _ %Tr[(g . (j] B %Tﬂ(@ gT) ;
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For later use define rescaled ¢’pgs: o, = <9 ., _Yov_ . _Nev - - NedZ o NeY?,
(47)? (47)? (47)? (47)? (47)?
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In case you’re suffering from “expectation versus reality syndrome™ ...




In case you’re suffering from “expectation versus reality syndrome™ ...

Or equivalently ...

BREXIT
N



A quiver diagram 1s useful to see (at least some of) what we did:

Before:

SU(NF)L,

SU(NF)R




After: (hence the name Tetrad)

SU(]:\fg) D

SU(Ng —2)s ® SU(2)s

SU(Nf)LD H SU(Nf)RD

SU(N¢ —2ng)r @ (SU(ng)r ® SU(2)1) SU(N¢ —2ng)r ® (SU(ng), ® SU(2),)




~ As this model is based on LS, the same UVFP applies (see later). But what about AS for
the SU(2)xSU(2) electroweak gauge groups?

These see a large number of flavours (Nf (small f) of order order Nc)?

© This gives UVFP behaviour with a fixed point at ’t Hooft couple ~ 1 ... if Nf >>16:

Palanques Mestre, Pascual; Gracey; Holdom:;
Shrock; Antipin, Pica, Sannino



~ As this model is based on LS, the same UVFP applies (see later). But what about AS for
the SU(2)xSU(2) electroweak gauge groups?

These see a large number of flavours (Nf (small f) of order order Nc)?

© This gives UVFP behaviour with a fixed point at ’t Hooft couple ~ 1 ... if Nf >>16:

Palanques Mestre, Pascual; Gracey; Holdom:;
Shrock; Antipin, Pica, Sannino

Resum first terms gives

3 Ba H(a
30y, HIY)
40&2 Nf

1
H(a) = 1 log |3 — 2&| + constant

+ O(Nf—2)

Coupling
A

L C€_4Nf

(LI [OV)

Flavour, g’ a, =

~—% Colour, g,y

\2

Mass squared



~ QOverall the picture is ...

Coupling
/

A A ¢ Flavour, g’

Colour, g,y

Mass squared

Colour, g, y " Electroweak, g’







- Can show by power counting that the two kinds of UVFP decouple.
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> In the Veneziano limit the corrections to the weak FP go like epsilon. Can neglect
everything but SU(2) gauge couplings when determining the SU(2) fixed points.

0 1.e.



~ Can show by power counting that the two kinds of UVFP decouple.

© In the Veneziano limit the corrections to the weak FP go like epsilon. Can neglect
everything but SU(2) gauge couplings when determining the SU(2) fixed points.
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- Conversely for the SU(Nc) fixed point ...

TFQg LF Qg ~ € TR OlyQlg ~ €



Radiative symmetry breaking



e Suppose that the classically relevant operators are negligible. (compared to the scales
we are about to generate.)

* Then Coleman-Weinberg radiative symmetry breaking is induced along the flow.

e First look at Yukawas:

Nearby FP for {}mt Gauge/Yukawa

with non-zero
0% \

0.00257

True UVFEFP with only non-zero y

0.00256 }

0.00255 +

0.00243 A2.00244 0.00245 0.00246 0.00247



® This in turn induces a flow in the quartic couplings driving them negative: we
essentially have Gildener-Weinberg breaking of the extended PS symmetry.

* Note that the H mass-squareds are all positive at this scale.
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® This in turn induces a flow in the quartic couplings driving them negative: we
essentially have Gildener-Weinberg breaking of the extended PS symmetry.

* Note that the H mass-squareds are all positive at this scale.
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Adding relevant operators (mass-squareds)



Organize relevant operators in terms of the U(Np) x U(Ng) flavour symmetry
that we break with the mass-squareds (closed under RG):

(ho + ipo) .
H = I vy x hq a)la
IN NpxNp T ( T D )
Nz -1
Lsope = —mp, Tr[HTH] — Y AXTr[HT*| Tr [H'T*]
a=1

Then solve Callan Symanszik eqn for them as usual =>




Non-trivial simple example...

Consider case where the trace component has a slightly smaller mass-squared:

class

V2 = mdTe(H H) + 242N Te(T,HY) (T, H)

2
m
— m%a — mia — m(z) + A?
A2{
i, =, = m
mg




Non-trivial simple example...

After some work find the following answer 1n terms of two RG invariants, one for
each independent (non-predicted) relevant operator  (where v=(1-1/NF"2)):

N _3fm0 N _3fA
9 -2 [ Yy e 2 g e
mg = My — — o A* vl — — )
Qg Qg
3me 3fA

fmo > T \

Dies away quickly in the IR Dies away slowly in the IR



Starting values get relatively closer in UV (note the masses are all shrinking in absolute
i terms in the IR) - full flavour symmetry restored precisely at fixed point

m

The sum of the mass-squareds quickly dies to zero in IR

>
S
N




Induces radiative breaking for H...

m02/ m*Z
0.010} :;'
0.005¢ ,";!
— ~22 =20 - ;?f'i t=log(p/ po)
ows e
—-0.010¢




Generally in IR find flavour bierarchies grow ...

V — Z A2 {Trn (h* +p°) —n ((Trnh)2 + (Trnp)Q)}

n>1

where 1T,, is the trace over the SU(n) sub-matrix



e Adapted perturbative asymptotically safe QFTs (gauge-Yukawa theories)

* A minimal embedding of the SM within this set-up straightforward within an
extended PS structure

* Radiative symmetry breaking can be driven by Coleman-Weinberg or running mass-
terms

* Opverall now has the “feel of” other RG systems with large numbers of degrees of
freedom in the UV: simpler dual way to understand this type of theory?

* It would be very nice to have a better lattice handle on large Nf UV fixed points



