Conformal Extensions of the Standard Model

Manfred Lindner

Scale invariance in particle physics and cosmology

Look again carefully at the SM as a QFT

- The SM itself (without embedding) is a 4d QFT like QED
 - infinities, renormalization $\leftarrow \rightarrow \delta * \delta \rightarrow$ only differences are calculable
 - SM itself is perfectly OK → many things unexplained...
- Has (like QED) a triviality problem (Landau poles $\leftarrow \rightarrow$ infinite λ)
 - triviality = inconsistency \rightarrow requires some scale Λ where the SM is embedded
 - running U(1)_V coupling: pole well beyond Planck scale... like in QED
 - running Higgs / top coupling \rightarrow upper bounds on m_H and m_t
 - \rightarrow the physics at Λ is unknown \rightarrow explicit scale or effective?
- Another potential problem is vacuum instability ($\leftarrow \rightarrow$ negative λ)
 - does occur in SM for large top mass > 79 GeV → lower bounds on m_H

The SM as QFT (without an embedding) works perfectly:

- a hard cutoff Λ and the sensitivity towards Λ has no meaning
- renormalizable, calculable ... just like QED
- BUT: an embedding is required ←→ triviality...

M. Lindner, MPIK CERN, Jan. 29, 2019 3

SM Hierarchy Problems

- 1) why are scales vastly different
- 2) why do scales remain vastly different under quantum corrections
- Loops \rightarrow Higgs mass depends on 'cutoff Λ '

Higgs
$$\delta M_H^2 = \frac{\Lambda^2}{32\pi^2 V^2} \left(6M_W^2 + 3M_Z^2 + 3M_H^2 - 12M_t^2 \right)$$
$$\simeq \mathbf{O}(\Lambda^2/4\pi^2)$$

 $m_H \le 200 \text{ GeV requires } \Lambda \sim \text{TeV} \Rightarrow \text{ new physics } \Rightarrow \text{ embedding at } \Lambda \sim \text{TeV} \Rightarrow \text{ *OR* explain how } m_H \text{ be O(100 GeV) if } \Lambda \text{ is huge ?}$

- SM + Dirac neutrinos: no problem just like SM
- SM + Majorana v's: → two scales: VEV and the Majorana mass(es) M

$$\to \delta m_H^2 \simeq {y_
u^2 \over 16\pi^2} \, M^2 \; {
m with} \; \; y_
u^2 = M m_
u / v^2 \to M \lesssim 10^7 - 10^8 \; {
m GeV}$$

 \rightarrow generates a HP problem for large M even if y_v is tiny $\leftarrow \rightarrow$ leptogenesis?

The Problem: Separation of **EXPLICIT** Scales

- Renormalizable QFT with two scalars ϕ , Φ with masses m, M and a hierarchy m << M
- These scalars must interact since φ⁺φ and Φ⁺Φ are singlets
 - $\rightarrow \lambda_{mix}(\varphi^+\varphi)(\Phi^+\Phi)$ must exist (= portal) in addition to φ^4 and Φ^4
- Quantum corrections ~M² drives both masses to the (heavy) scale
 - → vastly different explicit scalar scales are generically unstable
- Since SM Higgs exists → problem: embedding with a 2nd scalar
 - gauge extensions → must be broken...
 - GUTs → must be broken
 - even for SUSY GUTS → doublet-triplet splitting...
 - also for fashinable Higgs-portal scenarios...

Options:

- no 2^{nd} Higgs \rightarrow just the SM \rightarrow triviality \rightarrow requires a new scale...
- symmetry: SUSY, ... → conformal symmetry = no explicit scales!

The main Idea

- Do not introduce any fundamental (explicit) scales
 - **theories with conformal or shift symmetry**
- Dynamical breaking of CS \rightarrow Coleman Weinberg V_{eff}
 - → scale(s) by dimensional transmutation
 - → Non-linear realization of CS:
 - naïve power counting ($\sim \Lambda^2$) misleading
 - similar to gauge symmetry and vector boson masses
- An UV complete theory should have UV fixedpoints to avoid conformal anomalies

Anything pointing in that direction?

Is the Higgs Potential at M_{Planck} flat?

Experimental values point to metastability. Is it fully established?

- → we need to include DM, neutrino masses, ...? are all errors (EX+TH) fully included?
- → be cautious about claiming that metastability is established
- **→** May be a very important observation:
- remarkable relation between weak scale, m_t , couplings and $M_{Planck} \leftarrow \rightarrow$ precision
- remarkable interplay between gauge, Higgs and top loops (log divergences not Λ^2)

Is there a Message?

- $\lambda(M_{Planck}) \simeq 0$? \rightarrow remarkable log cancellations $\leftarrow \rightarrow$ CA $\sim \beta$ -fcts. M_{planck} , M_{weak} , gauge, Higgs & Yukawa couplings are unrelated
- remember: μ is the only single scale of the SM \rightarrow special role
 - \rightarrow if in addition $\mu^2 = 0 \rightarrow V(M_{Planck}) \simeq 0$
 - → flat Mexican hat (<1%) at the Planck scale!

- → conformal (or shift) symmetry as solution to the HP
- → combined conformal & EW symmetry breaking
 - conceptual issues
 - minimal realizations ←→ SM seems to know about high scales → bottom-up
 ←→ many new d.o.f. (fields, big reps.) ~ UV-instabilities

Generic Questions

- Isn't the Planck-scale spoiling things (explicit scale, cut-off, ...)?
 - **→** non-linear realization of conformal symmetry...
 - → ~conformal gravity...
 - protected by conformal symmetry up to conformal anomaly
 - **→** generate M_{Planck} by dimensional transmutation
 - → for now assumption: M_{Planck} somehow generated in a conformal setting
- Are M_{planck} and M_{weak} connected?
 - → 1st part: assumed to be independently generated scales
 - **→** later more...
- UV: ultimate solution should be asymptotically safe → UV-FPs...
- Conceptual change for scale setting:

So far a rollover of scale generation: $SM \rightarrow BSM \rightarrow GUT \rightarrow gravity (M_{Planck})$

Now → only relative scales – absolute scale is meaningless

Could solve both HPs $\leftarrow \rightarrow$ scale is a quantum effect

Fully consistent realization → now new concept for scale setting required

Non-linear Realization of Conformal Symmetry

SB of conformal symmetry

- → naïve power counting invalid
- → similar to Higgs mech. vs. explicit M_V
- only log sensitivity
 - $\leftarrow \rightarrow$ conformal anomaly $\leftarrow \rightarrow$ UV-FP
 - $\leftarrow \rightarrow \beta$ -functions
- Avoids hierarchy problem, even though there is the the conformal anomaly only logs $\leftarrow \rightarrow \beta$ -functions
- Dimensional transmutation of conformal theories by log running like in QCD
 - → scalar QCD: scalars can condense and set scales like fermions
 - → also for massless scalar QCD: scale generation; no hierarchy

Why the minimalistic SM does not work

Minimalistic version: → "SM-"

SM + with μ = 0 $\leftarrow \rightarrow$ CS

Coleman Weinberg: effective potential

→ CS breaking (dimensional transmutation)

→ induces for m_t < 79 GeV</p>
a Higgs mass m_H = 8.9 GeV

 Φ_{SM}

250

150

- This would conceptually realize the idea, but:
 Higgs too light and the idea does not work for m_t > 79 GeV
- DSB for weak coupling ←→ CS= phase boundary
 → scale set by running couplings
- Reason for $m_H << v$: V_{eff} flat around minimum $\longleftrightarrow m_H \sim loop factor <math>\sim 1/16\pi^2$

AND: We need neutrino masses, dark matter,

Realizing the Idea via Higgs Portals

- SM scalar Φ plus some new scalar φ (or more scalars)
- $CS \rightarrow no scalar mass terms$
- the scalar portal $\lambda_{mix}(\varphi^+\varphi)(\Phi^+\Phi)$ must exist
 - \Rightarrow a condensate of $\langle \phi^+ \phi \rangle$ produces $\lambda_{mix} \langle \phi^+ \phi \rangle (\Phi^+ \Phi) = \mu^2 (\Phi^+ \Phi)$
 - \rightarrow effective mass term for Φ
- CS anomalous ... \rightarrow breaking \rightarrow only $\ln(\Lambda)$
 - \rightarrow implies a TeV-ish condensate for φ to obtain $\langle \Phi \rangle = 246$ GeV
- Model building possibilities / phenomenological aspects:
 - ϕ could be an effective field of some hidden sector DSB
 - further particles could exist in hidden sector; e.g. confining...
 - extra hidden U(1) potentially problematic $\leftarrow \rightarrow$ U(1) mixing
 - avoid Yukawas which couple visible and hidden sector
 - → phenomenology safe due to Higgs portal, but there is TeV-ish new physics!

Rather minimalistic: SM + QCD Scalar S

J. Kubo, K.S. Lim, ML New scalar representation $S \rightarrow QCD$ gap equation:

$$C_2(S) lpha(\Lambda) \gtrsim X$$

 $C_2(\Lambda)$ increases with larger representations

 $\leftarrow \rightarrow$ condensation for smaller values of running α

M. Lindner, MPIK CERN, Jan. 29, 2019 13

Phenomenology

TeV-ish hidden sector ←→ may show up at LHC

S pair production cross section from gluon fusion (assumption: 100% BR into two jets)

Drawback of this scenario:

- large representations appear less attractive
- Tend to lead to instabilities at high energy
 - → cannot run all the way...

Realizing this Idea: Left-Right Extension

M. Holthausen, ML, M. Schmidt

Radiative SB in conformal LR-extension of SM

(use isomorphism $SU(2) \times SU(2) \simeq Spin(4) \rightarrow representations$)

particle	parity \mathcal{P}	\mathbb{Z}_4	$\operatorname{Spin}(1,3)\times(\operatorname{SU}(2)_L\times\operatorname{SU}(2)_R)\times(\operatorname{SU}(3)_C\times\operatorname{U}(1)_{B-L})$
$\mathbb{L}_{1,2,3} = \left(egin{array}{c} L_L \ -\mathrm{i} L_R \end{array} ight)$	$P\mathbb{PL}(t,-x)$	$L_R o \mathrm{i} L_R$	$\left[\left(\frac{1}{2},\underline{0}\right)(\underline{2},\underline{1}) + \left(\underline{0},\frac{1}{2}\right)(\underline{1},\underline{2})\right](\underline{1},-1)$
$\mathbb{Q}_{1,2,3}=\left(egin{array}{c} Q_L \ -\mathrm{i}Q_R \end{array} ight)$	$P\mathbb{PQ}(t,-x)$	$Q_R o -\mathrm{i} Q_R$	$\left[\left(\underline{\frac{1}{2}},\underline{0}\right)(\underline{2},\underline{1}) + \left(\underline{0},\underline{\frac{1}{2}}\right)(\underline{1},\underline{2})\right]\left(\underline{3},\frac{1}{3}\right)$
$\Phi = \left(egin{array}{cc} 0 & \Phi \ - ilde{\Phi}^\dagger & 0 \end{array} ight)$	$\mathbb{P}^{\Phi^{\dagger}}\mathbb{P}(t,-x)$	$\Phi \to i\Phi$	$(\underline{0},\underline{0})\ (\underline{2},\underline{2})\ (\underline{1},0)$
$\Psi = \left(egin{array}{c} \chi_L \ -\mathrm{i}\chi_R \end{array} ight)$	$\mathbb{P}\Psi(t,-x)$	$\chi_R \to -\mathrm{i}\chi_R$	$(\underline{0},\underline{0})\left[(\underline{2},\underline{1})+(\underline{1},\underline{2})\right](\underline{1},-1)$

- → the usual fermions, one bi-doublet, two doublets
- \rightarrow a \mathbb{Z}_4 symmetry
- \rightarrow no scalar mass terms $\leftarrow \rightarrow$ CS

→ Most general gauge and scale invariant potential respecting Z4

$$\begin{split} \mathcal{V}(\Phi, \Psi) &= \frac{\kappa_1}{2} \left(\overline{\Psi} \Psi \right)^2 + \frac{\kappa_2}{2} \left(\overline{\Psi} \Gamma \Psi \right)^2 + \lambda_1 \left(\mathrm{tr} \Phi^\dagger \Phi \right)^2 + \lambda_2 \left(\mathrm{tr} \Phi \Phi + \mathrm{tr} \Phi^\dagger \Phi^\dagger \right)^2 + \lambda_3 \left(\mathrm{tr} \Phi \Phi - \mathrm{tr} \Phi^\dagger \Phi^\dagger \right)^2 \\ &+ \beta_1 \, \overline{\Psi} \Psi \mathrm{tr} \Phi^\dagger \Phi + f_1 \, \overline{\Psi} \Gamma [\Phi^\dagger, \Phi] \Psi \; , \end{split}$$

- \rightarrow calculate V_{eff}
- → Gildner-Weinberg formalism (RG improvement of flat directions)
 - anomaly breaks CS
 - spontaneous breaking of parity, \mathbb{Z}_4 , LR and EW symmetry
 - m_H << v ; typically suppressed by 1-2 orders of magnitude Reason: $V_{\rm eff}$ flat around minimum
 - \leftrightarrow m_H ~ loop factor ~ $1/16\pi^2$
 - → generic feature → predictions
 - everything works nicely...

→ requires moderate parameter adjustment for the separation of the LR and EW scale... PGB...?

SM \otimes hidden SU(3)_H Gauge Sector

Holthausen, Kubo, Lim, ML

• hidden $SU(3)_H$:

$$\mathcal{L}_{\mathrm{H}} = -\frac{1}{2} \mathrm{Tr} \ F^2 + \mathrm{Tr} \ \bar{\psi} (i \gamma^{\mu} D_{\mu} - y S) \psi$$

gauge fields; $\psi = 3_H$ with $SU(3)_F$; S = real singlet scalar

• SM coupled by S via a Higgs portal:

$$V_{\text{SM}+S} = \lambda_H (H^{\dagger}H)^2 + \frac{1}{4}\lambda_S S^4 - \frac{1}{2}\lambda_{HS} S^2 (H^{\dagger}H)$$

- no scalar mass terms
- use similarity to QCD, use NJL approximation, ...
- χ -ral symmetry breaking in hidden sector: $SU(3)_L xSU(3)_R \rightarrow SU(3)_V \rightarrow generation of TeV scale$
- → transferred into the SM sector through the singlet S
- → dark pions are PGBs: naturally stable → DM

Realizing the Idea: Specific Realizations

SM + extra singlet: Φ, φ

Nicolai, Meissner, Farzinnia, He, Ren, Foot, Kobakhidze, Volkas, ...

SM \otimes SU(N)_H with new N-plet in a hidden sector

Ko, Carone, Ramos, Holthausen, Kubo, Lim, ML, Hambye, Strumia, ...

SM embedded into larger symmetry (CW-type LR)

Holthausen, ML, M. Schmidt

SM + QCD colored scalar which condenses at TeV scale Kubo, Lim, ML

 $SM \otimes [SU(2)_X \otimes U(1)_X]$

Altmannshofer, Bardeen, Bauer, Carena, Lykken

Since the SM-only version does not work \rightarrow observable effects:

- Higgs coupling to other scalars (singlet, hidden sector, ...)
- dark matter candidates ←→ hidden sectors & Higgs portals
- consequences for neutrino masses

Conformal Symmetry & Neutrino Masses

ML, S. Schmidt and J. Smirnov

- No explicit scale → no explicit (Dirac or Majorana) mass term
 → only Yukawa couplings ⊗ generic scales
- Enlarge the Standard Model field spectrum like in 0706.1829 R. Foot, A. Kobakhidze, K.L. McDonald, R. Volkas
- Consider direct product groups: SM ⊗ HS
- Two scales: CS breaking scale at O(TeV) + induced EW scale

Important consequence for fermion mass terms:

- → spectrum of Yukawa couplings ⊗ TeV or EW scale
- → interesting consequences ←→ Majorana mass terms are no longer expected at the generic L-breaking scale → anywhere

Examples

$$\mathcal{M} = \begin{pmatrix} 0 & y_D \langle H \rangle \\ y_D^T \langle H \rangle & y_M \langle \phi \rangle \end{pmatrix}$$

Yukawa seesaw:

$$m SM +
u_R + singlet \ \langle \phi
angle pprox TeV \ \langle H
angle pprox 1/4 TeV
angle$$

→ generically expect a TeV seesaw

BUT: y_M can be tiny

→ wide range of sterile masses **→** including pseudo-Dirac case

→ suppressed 0vββ

Radiative masses

The punch line:
all usual neutrino mass
terms can be generated

- → suitable scalars required
- → no explicit masses: all via Yukawa couplings
- → different numerical expectations ← → could easily explain keV masses

Another Example: Inverse Seesaw

 $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_X$

Humbert.	ML.	. Smirnov
HUIIINOI) 1111119	

	H	ϕ_1	ϕ_2	L	ν_R	N_R	N_L
$U(1)_X$ Lepton Number		1	2	0	0	1	1
		0	0	1	1	0	0
$U(1)_Y$		0	0	-1	0	0	0
$SU(2)_L$		1	1	2	1	1	1

$$\mathcal{M} = \begin{pmatrix} 0 & y_D \langle H \rangle & 0 & 0 \\ y_D \langle H \rangle & 0 & y_1 \langle \phi_1 \rangle & \tilde{y}_1 \langle \phi_1 \rangle \\ 0 & y_1 \langle \phi_1 \rangle & y_2 \langle \phi_2 \rangle & 0 \\ 0 & \tilde{y}_1 \langle \phi_1 \rangle & 0 & \tilde{y}_2 \langle \phi_2 \rangle \end{pmatrix}$$

→ light eV "active" neutrino(s)

→ two pseudo-Dirac neutrinos; m~TeV

 \rightarrow sterile state with $\mu \approx keV$

→ tiny non-unitarty of PMNS matrix

tiny lepton universality violation

 \rightarrow suppressed $0\nu\beta\beta$ decay \leftarrow !

→ lepton flavour violation

tri-lepton production could show up at the LHC

→ keV neutrinos as warm dark matter →

21

Conformal Symmetry & Dark Matter

Different natural and viable options:

- 1) eV, keV = DM, TeV, ... sterile ν mass easily possible \longleftrightarrow not so easy in standard see-saw's
- 2) New particles which are fundamental or composite DM candidates:
 - hidden sector pseudo-Goldstone-bosons
 - stable color neutral bound states from new QCD representations
- → some look like WIMPs
- → others are extremely weakly coupled (via Higgs portal)
- → or even coupled to QCD (threshold suppressed...)

The Planck Scale from CS Breaking

- \rightarrow dynamically generated from conformal gravity \otimes SU(N)
 - condensate via SU(N) helper field similar to \rightarrow Donoghue, Menezes, ...
- → more symmetry + no scale → power counting renormalizable
- J. Kubo, ML, K. Schmitz, M. Yamada

 see talk with more details by M. Yamada

$$S_{\rm C} = \int d^4 x \sqrt{-g} \left[-\hat{\beta} S^{\dagger} S R + \hat{\gamma} R^2 - \frac{1}{2} \operatorname{Tr} F^2 + g^{\mu\nu} (D_{\mu} S)^{\dagger} D_{\nu} S - \hat{\lambda} (S^{\dagger} S)^2 + a R_{\mu\nu} R^{\mu\nu} + b R_{\mu\nu\alpha\beta} R^{\mu\nu\alpha\beta} \right]$$

R = Ricci curvature scalar, $R_{\mu\nu}$ = Ricci tensor, $R_{\mu\nu\alpha\beta}$ = Riemann tensor

F = field-strength tensor of the $SU(N_c)$ gauge theory; S = complex scalar in fund. rep. $\rightarrow N_c$

→ most general diffeomorphism invariance, gauge invariance, and global scale invariance

Condensation in $SU(N_c)$ gauge sector: $\langle S^+S \rangle \rightarrow Planck mass \rightarrow normal GR$

$$ightharpoonup M_{
m planck} = 2 \, eta \, f_0 = rac{N_c eta}{16 \pi^2} \, (2 \, \lambda \, f_0) \, \left(1 + 2 \, \ln rac{2 \, \lambda \, f_0}{\Lambda^2}
ight) \qquad {
m with} \quad f_0 = < S^+ S > 1 \, {
m mass}$$

ghost? → don't quantize GR, but after condensation normal gravity → best of both worlds?

→ Dilaton-scalaron inflation → fits data very well!

Scale dependence: EW vs. Planck Scale

- Assume:
 - SM scale generated by some TeV-ish conformal extension
 - Planck scale generation by conformal gravity ⊗ scalar QCD
- → Do we understand the hierarchy between EW and Planck scale?

$$\mathbf{V} = \lambda_1 (\mathbf{H}^{\dagger} \mathbf{H})^2 + \underbrace{\lambda_2 (\mathbf{H}^{\dagger} \mathbf{H}) (\mathbf{\Phi}^{\dagger} \mathbf{\Phi})}_{\text{portal coupling}} + \lambda_3 (\mathbf{\Phi}^{\dagger} \mathbf{\Phi})^2$$

- \rightarrow Does λ_2 portal lead to the usual hierarchy problem? \rightarrow Ideas:
 - a tiny $\lambda_2 \leftarrow \rightarrow$ additive RGE evolution...
 - composite Higgs & loop generation of portal term
 - sequential breaking by RG running → `CW tumbling' m² = 0 is boundary broken/unbroken
 - → SSB for tiny attractive force
 - \rightarrow if $\langle \Phi^+ \Phi \rangle$ condenses first (stronger coupling)
 - \rightarrow portal can induce m² >0 for H \rightarrow shifts SSB boundary
 - → 2nd SSB by log running of couplings

Summary

- SM works (so far) perfectly
 - be a bit more patient: new physics around the corner...
 - maybe it is time to re-consider some things...
- > The old hierarchy problem...? No new physics observed
 - $\lambda(M_{Planck}) = 0$? $\leftarrow \rightarrow$ precise value for $m_t \rightarrow$ is there a message?
 - → SM embedings into QFTs with conformal symmetry
 - → combined conformal & electro-weak symmetry breaking
 - → implications for BSM phenomenology
 - → implications for Higgs couplings, dark matter, ...
 - → implications for neutrino masses
 - → testable consequences: @LHC, dark matter, neutrinos
- Planck scale generation by gauge induced breaking of conformal GR
 - → very nice phenomenology: inflation...
 - → consistent quantum gravity: renormalizablity?, ghost?
 - ←→ normal GR from a theory with more symmetry
 - → stabilizing large scale hierarchies...