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Drowning by humbers

The fact is that

where G - Fermi constant, G, - Newton constant

Quantum complications:

G.F. Giudice, (2008) 155, 0801.2562
Let M, be some heavy mass scale. Then, one expects
2 2
5mH,X ~ My
Even if one assumes that there are no heavy thresholds beyond the EW scale, then, naively,

2 2
5mH,gmv. ~ MP



EFT approach and beyond

The Effective Field Theory paradigm:

Low energy description of Nature, provided by the SM, can be affected by an
unknown UV physics only through a finite set of parameters.

This “Naturalness principle” is questioned now in light of the absence of signatures of new
physics at the LHC.

G.F. Giudice, PoS EPS-HEP2013 (2013) 163, 1307.7879

What if one goes beyond the EFT approach? Many examples are known:

@ Multiple point criticality principle
D. L. Bennett, H. B. Nielsen’94; C. D. Froggatt, H. B. Nielsen’96

® Asymptotic safety of gravity S. Weinberg’09; M. Shaposhnikov, C. Wetterich’09

® EW vacuum decay V. Branchina, E. Messina, M. Sher’14; F. Bezrukov, M. Shaposhnikov’14
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It is tempting to write something like y ~ Mpe_B

where v is the Higgs vev and B =~ 37 in order to match with experiment.

Eqg. (*) can be viewed as resulting from a saddle-point approximation of some functional
integral. At this point euclidean classical configurations come into play.



Outline of the idea

Let us endow Eq. (*) with the physical meaning.

Consider a theory containing the real scalar field @ , the metric 8.y, and, possibly, other fields whose
presence we ignore for the moment. Let M, be the only classical scale in the theory. Then,

The vacuum expectation value of @ is (@) ~ [9¢9gﬂy¢(0)e_5 .

Assume that in the large-field limit the scalar degree of freedom is reorganised according to
@ — Mpeqb/MP , @2 Mp
Then, the expression in the path integral in this limit becomes
p(0)e™ — Mpe_S/ , S =—=p0)/Mp+ S
Assume that the saddle-point approximation (SPA) can be applied to S’ . Then,
(@) = Mpe™ 5+

where B - the value of S’ evaluated on a saddle, Bo - the euclidean action evaluated on a
vacuum solution.

For this to work, it is necessary to find

@ appropriate saddle points of S’ ,
® semiclassical parameter that would justify the SPA,
® physical argumentation that would justify the change of the scalar field variable.
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Framework

Conjectures:

® Scale Invariance: The idea of reducing an amount of dimensionful parameters as a way towards
the fundamental theory seems fruitful. Besides, SI can protect the Higgs mass
against large radiative corrections.

@ No degrees of freedom beyond the EW scale: Experimental data?

® Dynamical gravity: We believe gravity plays a crucial role in the effect we look for.
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Structure of the instanton:

/

The core of the instanton probes UV physics.
The tail is sensitive to low energies.

Several options are possible:
® B~ By

® Both By, and B, . contribute significantly to B

Disclaimer: We do not argue that the models we choose to test the instanton mechanism
can indeed be embedded into the UV complete theory of gravity.



Example 1: Higgs inflation scenario

Lagrangian of the model: (inspired by Higgs inflation) low- S regime

—>
< 1 1 — " roc-
—= =~ (M3 +EQIR +(0p) +V 2 Mp  lergeo ¢
Ve 2 2 '
to get rid of the non-minimal coupling to make the kinetic term canonical V= Z(p
Some fields redefinition: / /
~ . QZ Qz _ Mg + 5402 _ M @/MP
B =g, D=7 mT, g =M
“Einstein frame” Lagrangian:
e _Lypgy (0p)* + VQ™ g =—
N R T T 1E+ 6



Example 1: Higgs inflation scenario

Lagrangian of the model: (inspired by Higgs inflation) low-i0 S regime

—>
& 1 1 — ‘ arge-
—= =~ (M3 +EQIR +(0p) +V 2 Mp  lergeo ¢
to get rid of the non-minimal coupling to make the kinetic term canonical V = Zgg
Some fields redefinition: / /
_ Mp + Ep? -
g/,u/ — ngﬂy ’ Qz — M2 ’ (p — MP6¢/MP
P
“Einstein frame” Lagrangian:
gE 1M2R 1 502 1 ot Sl regime 1
— = —— +—0p)" + - a— d¢ =
i 2w T e+ 6
Action to vary. S'=- @(O)/MP + S the source provides _
an additional o/Mp
boundary condition The problem: @(0) = o
Metric ansatz:  d§* = f*(r)dr* + r*dQ3 5
3= | . M
r 1 rvp
EoM for ¢ in the Sl regime: e ! 10° 10°
Jag; Mp -5
~10
Short-distance asymptotics of the instanton: ¢’ ~ Pr‘l
~15
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Example 1: Higgs inflation scenario

some operator with higher degree of the

To cure the problem, let us modify the Lagrangian: / derivative of ¢ . For example, take 1 = 2

A 1 | 0 2n
L1 oL+ epPR 4 S0P+ V 5, — L
V8 2 2 (MpQ)4n—4 ;
V= Z§04
Some fields redefinition:
M3 + E¢? _
~  _ 02 2 _ P _ IM
gﬂV_Qg,uv’ Q= M%, ) (P—MP€¢ P
“Einstein frame” Lagrangian:
Sl regime ;5 _.4 ,
Zr 1 .1 . 0L (0p) Sl regime 1
—= = ——M3R + —(0p)* + VQ™* > a— ag =
Vi 27 2 Vg * e T /E+6
Action to vary: = — @
y S P(0)/Mp+ S 5/Ms L
100 The problem: |B| = O(1)
Metric ansatz:  d§* = f*(r)dr* + r*dQ3 80
46 pp°> o’ 1 60
EoM for @ in the Sl regime: . P f + ¥ -~
MP f faSI MP 40 -
0 = 52/52 20 -
Short-distance asymptotics of the instanton: ' ~ M35~"° | | | | M,
1072 107! 1 107 0>

Different colors for different o
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Example 1: Higgs inflation scenario

To cure the problem, let us modify the Lagrangian: / some polynomial operator
% = — l(M2 + Ep?)R +1F(¢/M )(0p)? +V +6 @)
NG 2P 2 P " (M pQ)4n—4 .
V= Z§04
Some fields redefinition:
M3 + E¢? _
= _ 02 2 _ 7P _ IM
g,m/_gg,uv’ Q° = M% , (p—MP€€0 P
“Einstein frame” Lagrangian:
3E 1 - 1 - 53ESI regime (5@)4 large-@ regime
— =~ =MpR+—(0p)" +VQ~* =~ % a’ — ayp > ag
Vi o2 2a V& &-Mp
Action to vary: S'=—@O0)/Mp+ S
BHE
Metric ansatz:  d§* = f*(r)dr* + r*dQ3 1;18 [
/ 100 -
EoM for @ in the HE regime: 5T = —— 80 -
MP f faHE MP 60 -
5 = 6,/ 40
20 -
o qfay
Theresult: Bpg~+\/dup B~ By (@)~ Mpe_B 200 400 600 800 1000

Here £~ 10°, 6 ~ 1078
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Discussion

Points to notice:

@ There is nothing special about B ~ 37/
@ The instanton is not sensitive to the physics at low energies
@ The mechanism is not sensitive to the particular model, but:

@ Approximate Weyl invariance at high energies seems to be necessary
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Example 2: No scale scenario

The Higgs-Dilaton Lagrangian: (inspired by the fact that all scales emerge dynamically)

<, B 1 5 5 1 , 1 5
— = - 5(5)()( + &h )R + 5(0)() + E(Oh) +V

V8
the vev of the dilaton gives the Planck mass “polar coordinates”

Some fields redefinition... /

M, cos @ M, sin @
y=— . oPMp = pIMp

e , h = e
,/1+6§%
0 — nl2 ]

“Einstein frame” Lagrangian:

v/ 1+ 6&
(9) a— dg =

& 1 )
=L = (00)* + VQ~™ 176, +6

— —M3R +

N

(5 )2 + b_
2a0)" " T
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Example 2: No scale scenario

The Higgs-Dilaton Lagrangian: (inspired by the fact that all scales emerge dynamically)

<, B 1 5 5 1 , 1 5
— = - 5(5;()( + &h )R + 5(0)() + E(Oh) +V

Nz

the vev of the dilaton gives the Planck mass “polar coordinates”
Some fields redefinition... . /
= My cos 6 My = Mpsin 6 oM,
/1+6§% \/ 1+ 65,
“Einstein frame” Lagrangian: o i
A | R | B b(0) ~ a— dg =
Ze o Lpre L G+ 29 G0p + va- /g, +6
\/§ 2 2a(0) 2
Action to vary: S'=—=pO0)/Mp+ S
T+ 68, hiM,
Metric ansatz:  d§* = f*(r)dr* + r*dQ3 L |
rp’ 1
EoM for P = ——
Ja(0) Mp

Short-distance asymptotics of the instanton:

The same problems as in example 1.
The same treatment.
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Example 2: No scale scenario

The modified Lagrangian: (¢!, 9% = (1, h)

| 1 1 . .
—J _ __(5 52+§hh2)R +_yi(.2)g,ul/a (pla ¢] +2y(4)gﬂva COlangjngapCOkag@l‘FV

\/g 24 2V

Some fields redefinition...

M, cos @ M, sin @
){ = P c ep/MP , h = P 0 ep/MP

/1+6§){ \/1+6&,

“Einstein frame” Lagrangian:

/just an example 0= z/2
2 1 s 1 ( ) (dp)* a’ — ayg
—E MR+ (0p)* +—=(00)% +6 +vQ
E 2P 2a0) M5
Action to vary: S'=—=pO0)/Mp+ S
/T + 6E, hiM,
Metric ansatz:  d§* = f*(r)dr* + r*dQ3
, 4007 =0 =0
46 p3r rip’ 1
EoM for 7 — 300 -
Mg f° fa (9) MP
2l
Short-distance asymptotics of the instanton: pro = Mpo 100 -
0 — /2
As before, By ~+\/ayr B~ Brars TEC 50 100 150 200 250 \/ L+ 6c, 2/Mp

Different colors for different o
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Outlook
Q

?
21

@ More understanding of the singular instanton is needed (what about fluctuations above
it?),

@® More understanding of the conditions for the successful implementation of the
mechanism is needed (what is special about gravity?),

@® The option where both low-energy and high-energy parts of B are important is also
possible,

@ 2-point scalar correlation function via instanton?

@® Majorana masses via instanton?

1l



Thank you!



