

Emanuele Re

CERN & LAPTh Annecy

The 15th Workshop of the LHC Higgs Cross Section Working Group CERN, 10 December 2018

$pp \rightarrow VH$: production

- QCD NNLO correction to production
 - . inclusive (+ NLO EW): vh@nnlo
 - . differential: 3 groups [Ferrera et al. '11-'17 [HVNNLO], Campbell et al. '16 [MCFM], Caola et al. '17]
- in general, NNLO corrections moderate
- ▶ $gg \rightarrow HZ$ (NNLO) term sizeable above $t\bar{t}$ threshold

. responsible for the dominant uncertainty

	\sqrt{s} [TeV]	$\sigma_{ m NNLO~QCD\otimes NLO~EW}[pb]$	$\Delta_{\text{scale}}[\%]$	$\Delta_{\text{PDF}\oplus\alpha_{s}}[\%]$
	13	1.358	$^{+0.51}_{-0.51}$	1.35
WН	14	1.498	$^{+0.51}_{-0.51}$	1.35
	27	3.397	$+0.29 \\ -0.72$	1.37
	\sqrt{s} [TeV]	$\sigma_{ m NNLO~QCD\otimes NLO~EW}[m pb]$	$\Delta_{\text{scale}}[\%]$	$\Delta_{\text{PDF}\oplus\alpha_{s}}[\%]$
	13	0.880	$^{+3.50}_{-2.68}$	1.65
ZH	14	0.981	$^{+3.61}_{-2.94}$	1.90
	27	2.463	$+5.42 \\ -4.00$	2.24

[updated numbers by A. Mueck for HL/HE studies]

▶ $gg \rightarrow HZ$ at NLO with full mass dependence is one of the TH priorities

[Brein et al.]

$pp \rightarrow VH$: production

- QCD NNLO correction to production
 - . inclusive (+ NLO EW): vh@nnlo
 - . differential: 3 groups [Ferrera et al. '11-'17 [HVNNLO], Campbell et al. '16 [MCFM], Caola et al. '17]
- in general, NNLO corrections moderate
- ▶ $gg \rightarrow HZ$ (NNLO) term sizeable above $t\bar{t}$ threshold

. responsible for the dominant uncertainty especially in the boosted regime

Fiducial cross section	MCFM-8.0	
no $gg \rightarrow HZ$	$7.14^{+0.5\%}_{-0.9\%}~{ m fb}$	
with $gg \rightarrow HZ$	$7.92^{+2.0\%}_{-1.5\%}~{ m fb}$	
no $gg \rightarrow HZ$, high- $p_{t,Z}$	$1.21^{+0.1\%}_{-0.2\%}~{ m fb}$	
with $gg \rightarrow HZ$, high- $p_{t,Z}$	$1.49^{+5.3\%}_{-4.1\%}~{ m fb}$	

▶ $gg \rightarrow HZ$ at NLO with full mass dependence is one of the TH priorities

[Brein et al.]

$pp \rightarrow VH$: the $H \rightarrow b\bar{b}$ decay

▶ <u>NNLO QCD corrections to $H \rightarrow bb$ </u>: 2 groups, massless *b*-quarks

[Anastasiou et al. '12, Del Duca et al. '15]

More recently, included in fully-differential NNLO computation (NNLO QCD for production and decay)
[Ferrera et al. '17. Caola et al. '17]

 large corrections mostly in regions not populated at LO (
 — K-factors depend on cuts. Dominated by extra emissions in decay.)

there's ongoing work to compute NNLO corrections to the decay with massive b

$pp \rightarrow VH$: event generators

- NLO+PS (POWHEG or MC@NLO) available with many generators
- more recent developments:
 - 1. VH and VH+jet: NLO QCD + NLO EW + PS
 - 2. NNLOPS with NLO $H \to b \bar{b}$ decay

[Granata et al. '17] [Astill et al. '16-'18]

- . MCFM (HVNNLO) as input for NNLO ; POWHEG-BOX-RES (with Minlo) to deal with NLO corrections in production and decay.
- . $gg \rightarrow HZ$ included (with m_t -dependence, but just at LO, no extra partons in fixed-order part)

. in absence of a "(NNLO QCD+NLO EW)+PS tool", 1. could also be used to compute EW differential rescaling as: (MiNLO + NLO EW) / (MiNLO without EW) 3/7

$gg \to HZ$

- ► at NNLO, the gg → HZ contribution is effectively a "LO" term, but quite relevant, especially in boosted regime
 - . currently this is included in EXP analysis at LO (with m_t dependence), and the total cross-section is rescaled to an approximate NLO+NLL results (fully inclusive, $m_t \rightarrow \infty$) [Altenkamp et al. '12, Harlander et al '14]
- more differential results exist, where 0 and 1 jet merging is performed at LO
- desirable to compare currently used results (LO+PS) against LO merging of the 0 and 1 jet (loop-induced) processes
- ongoing activity in VH group:

[PRELIMINARY results by S. Kuttimalai. More to come.]

"final result" should come from an exact NLO computation...

$gg \rightarrow HZ$: new TH/EXP ideas

[Harlander,Klappert,Pandini,Papaefstathiou '18]

- data-driven strategy to isolate $gg \rightarrow HZ$ for associated HZ at NNLO
- based on comparison of the ZH to the WH cross section, as a function of M_{HV}
- define $R_{\text{DY}}^{ZH} = \frac{\sigma^{ZH}}{\sigma_{\text{DY}}^{ZH}}$ and use $R_R^{ZW} = \frac{\sigma^{ZH}/\sigma^{WH}}{\sigma_{\text{DY}}^{ZH}/\sigma^{WH}}$
- \rightarrow denominator from SM TH, very robust (left)
- $\rightarrow\,$ numerator measured from data ; pheno study, at hadron level, using 1- and 2-leptons channels with realistic cuts

- ► $gg \rightarrow ZH$ in the SM: can be established at the $\sim 3.2\sigma$ level, at the HL-LHC \rightarrow potentially better if using also 0-lepton channel
- \rightarrow assessing BSM effects requires better control of $gg \rightarrow ZH$ (NLO).

▶ V + heavy flavour production is one of the main backgrounds to $pp \rightarrow VH(\rightarrow b\bar{b})$.

 $pp \rightarrow V + b\bar{b}$

- study more precisely its impact (and uncertainties thereof) in the signal region
- ongoing activity in VH group: comparison between the currently-used tools, and several, more accurate, predictions.
 - for instance, currently in ATLAS: Sherpa MEPS@NLO (5FS) vs. MG+PY8 (5FS, CKKW)

[PRELIMINARY results for $W^+b\bar{b}$ at NLO+PS; thanks to L. Buonocore, C. Oleari, F. Tramontano. More to come.]

- we have taken part in the activities for the HL/HE report [thanks to the HAWK team - A. Mueck in particular - for their help]
- ▶ we started 2 MC studies, with the pragmatic approach of addressing to which extent tools currently used in ATLAS and CMS are doing a good job, compared to more advanced ones; at least for the $gg \rightarrow HZ$ study, we hope to get results soon.
- TH improvements for the future:
 - ▶ probaly the priority is the computation of $gg \rightarrow HZ$ at NLO
 - \blacktriangleright there's work in progress on the computation of the $H \to b \bar{b}$ decay at NNLO with massive b-quarks
 - NNLOPS with NNLO decay should be feasible

Thanks for your attention

Extra slides

Caola et al 1712.06954

Decay in the massless approximation: extract Yukawa and then set $m_b = 0$

$$\Gamma_{H \to bb} = y_b^2 \left(\Gamma_{m_b=0} + \mathcal{O}\left(\frac{m_b^2}{m_H^2}\right) \right)$$

Above works at LO and NLO, but fails at NNLO as it neglects contributions that are of the same order, i.e. $y_b^2 \alpha_s^2$, that arise in diagrams with a helicity flip (and hence a mass insertion)

slide from G. Zanderighi talk at Higgs Couplings 2018