

Experimental Summary tH/ttH Subgroup

Benjamin Stieger, Maria Moreno Llacer, Laura Reina, Stefano Pozzorini

15th LHC HXSWG Workshop December 10th 2018

ttH Spectroscopy

 $t\bar{t}H \rightarrow W^+b W^-\bar{b} H \rightarrow bb + (jjjj/lvjj/lvlv) + (bb/WW^*/ZZ^*/\tau\tau/\gamma\gamma)$

- Lepton+bb ($t\overline{t} \rightarrow (0)$ 1–2 leptons, $H \rightarrow bb$)
 - Large tt+HF backgrounds but high signal yield
 - Challenging combinatorics
- Multileptons ($t\bar{t} \rightarrow 1-2$ leptons, $H \rightarrow WW^*/ZZ^*/\tau\tau \rightarrow 1-4$ lep's)
 - Mixture of ttW/ttZ and nonprompt lepton (tt) backgrounds
 - Challenging ttW \leftrightarrow ttH separation
 - Very clean $H \rightarrow ZZ \rightarrow 4L$ selection, but very low BR
 - **Diphoton** $(t\overline{t} \rightarrow 0 1 \ leptons, H \rightarrow \gamma\gamma)$
 - High purity but low signal yield
 - Mostly other Higgs backgrounds

Durity of seletion

Statistical power

Selected Recent Results

- [Spring 2018] ttH observation papers by both experiments CMS <u>HIG-17-035</u> <u>PRL 120 (2018) 231801</u> ATLAS <u>HIGG-2018-13</u> <u>PLB 784 (2018) 173</u>
 - Both using full 2015+2016 13 TeV data and all major channels
 - 2017 data in Hyy and HZZ4L for ATLAS
- [Nov 2018] CMS ttH multilepton updated with 2017 data <u>HIG-18-019</u>
- [Nov 2018] CMS ttH γγ updated with 2017 data <u>HIG-18-018</u>
- [*Nov 2018*] CMS **tH combination** with **2015+2016 data** <u>*HIG-18-009</u> submitted to PRD*</u>

ATLAS ttH bb (2015+2016 data)

- Event categorization by numbers of jets and different b-tags
 - Separately for dilepton, single lepton, and boosted single lepton
- Multi-stage signal classification using BDTs boosted decision tree
- Dominant tt+HF background split into sub-categories
- Crucial issue is modeling of tt+bb backgrounds

...see also Stefano's talk

HIGG-2017-03

ATLAS ttH Multilepton (2015+2016 data)

 Leptons selected using dedicated BDTs to suppress nonprompts and charge misidentifications

HIGG-2017-02

- 7 signal regions with 2–4 light leptons and hadronic τ's and at least 2 jets and 1 b-tagged jet
- Signal discrimination using dedicated BDTs for each channel

ATLAS ttH combination (2015+'16+'17 data) HIGG-2018-13

- Combine existing multilepton and bb results with $\gamma\gamma$ and ZZ4L
 - γγ + b-jet events categorized in leptonic/hadronic and in BDT bins
 - 4L + b-jet not yet sensitive 0 events observed (~1 expected)
- Overall precision on σ_{ttH} of about 20%

6.3 σ significance (5.1 expected)

CMS ttH bb (2015+2016 data)

- Similar categorizations by N_{jets} and N_{b-tags} to ATLAS analysis
- Same splitting of tt+HF background components as ATLAS
- Multiclass DNN to separate ttH from different tt+HF components
- Uncertainty on σ_{ttH} of about 60%

HIG-17-026

CMS ttH multilepton (2017 data update)

- BDTs used in lepton selection and signal classification
- Update of 2016 analysis with new $2L+2\tau_h$ category
- Combined uncertainty on σ_{ttH} of about 35%

 $\hat{\mu} = 0.96 + 0.34_{-0.31}$ 3.2 σ significance (4.0 σ expected)

HIG-18-019

CMS ttH $\gamma\gamma$ update with 2017 data

γγ + b-jet events categorized by lepton and dedicated BDTs

HIG-18-018

- About 35% uncertainty on σ_{ttH}
- Still limited by statistical uncertainty

CMS ttH combination (2015+2016 data only) HIG-17-035

- bb, multilepton, and γγ analyses on 2016 13 TeV dataset
 - Combined with 7 and 8 TeV datasets
- Overall uncertainty of about 22% on σ_{ttH}:

 $\hat{\mu} = 1.26 + 0.31_{-0.26}$ 5.2 σ significance (4.2 σ expected)

Single top + Higgs cross section is sensitive to (amplitude,) relative sign, and phase of y_t and g_{HVV}.

- Interference between leading order diagrams (destructive in SM)
 - Non-SM couplings enhance tH
- Similar signatures and channels to ttH, but with lower multiplicities and forward activity
- Signal / background separation is more distinct
- Much lower signal cross section

 $\kappa_{\rm V} = g_{\rm HVV}/g_{\rm HVV}^{SM}$

11/15

Likelihood scan of y_t/y_t^{SM} with tH and ttH

- <u>HIG-18-009</u>
- CMS analysis of 2016 data in **multilepton** and **bb** channels
 - Reinterpretation of ttH yy categories
- CMS $35.9 \,\mathrm{fb}^{-1}$ (13 TeV) 40 Sensitivity on y_t magnitude Observed $pp \to tH + t\bar{t}H$ Expected (SM) driven by ttH yield $H \rightarrow WW/ZZ/\tau\tau/b\overline{b}/\gamma\gamma$ 35 Observed (Multilepton) $\kappa_{\rm V} = 1.0$, resolved tH adds sensitivity to sign Expected (Multilepton) 30 - Observed ($\gamma\gamma$) Expected $(\gamma\gamma)$ Observed (bb) 25 Data prefer positive sign Expected ($b\overline{b}$) $2\Delta ln(\mathcal{L})$ by ~1.5 σ (4 σ expected) SS 20 4σ 15 • Limit on SM-like tH at 10 $\sigma < 25 (12) \times \sigma_{tH}^{SM}$ 95 % C.L. 3σ 5 2σ 1σ 0 -2 0 2 3 -3-1

First steps towards improving theory input in the multilepton channels, starting with ttW background

(Stefano's talk)

- LHC HXSWG focus on theory inputs to ttbb (and ttH(bb)) so far
- Systematic uncertainties now almost equal to statistics in multilepton channels
 Pre-fit impact on us
- Theory systematics more and more important
- Consider modeling of main discriminating distributions
- Main backgrounds are ttW/ttZ (Nonprompt leptons are estimated from the data)

ttW + 2 jet events populate high-BDT, signal-like phase space. How well do we model these?

- Consider ttW events in **2LSS channels** (similar for 3L)
- Main discrimiating feature is number of jets
- Split **ttH vs ttV BDT output** for ttW events in bins of jets:

Summary/Conclusion

- **Observed ttH production** with 2016 (and 2017) data
- Steadily moving from search/limits to measurements and from statistic dominated to systematic dominated regime
 - Next step: legacy Run II analyses (full 13 TeV dataset)
- Dedicated tH analyses add sensitivity to sign/phase of yt
- Starting efforts to improve theory inputs to multilepton analyses

Benjamin Stieger (UNL)

HXSWG15, December 10th 2018