Recent off-shell experimental results

Roberto Di Nardo (UMass), <u>Meng Xiao</u> (JHU)

The 15th Workshop of the LHC Higgs Cross Section Working Group Dec 10th, 2018

Run1 experimental off-shell measurements

 $\sigma_{gg \to H \to ZZ^*}^{\text{on-shell}} \sim \frac{g_{ggH}^2 g_{HZZ}^2}{m_{H} \Gamma_{H}}$

- Assuming coupling doesn't run on mass, $\sigma_{off-shell} / \sigma_{on-shell} \sim \Gamma_{H}$
- Analyses have been published at Run1 from both ATLAS and CMS
 - ATLAS: < 22.7 MeV (ZZ+WW)
 - CMS: < 13 MeV (ZZ+WW)

$gg \rightarrow (H) \rightarrow ZZ k$ -factor

- In Run1, only calculation on S, B are available
- NLO k-factor on S, B, I in paper arXiv:1605.04610
 - mzz < 2*mt: NLO calculation for massless quarks +1/mt expansion for top contribution
 - mzz > 2*mt: massless quarks; assume the identical results between massive and massless
 - agrees at 10% between B,S,I above 200 GeV
- NNLO k-factor for S known, ~1.2 NNLO/NLO
- A dedicated meeting between ATLAS, CMS and theorists were organized on how to treat the Kfactors in Feb 2018, <u>indico</u>

ATLAS off-shell measurement

- 2016 data (36.1 fb⁻¹) publication on the width measurement
 - 4I + 2I2v final states
- Apply dedicated NLO correction on S, B and I
 - QCD uncertainty (mzz)10-20%
 - < 2mt NLO calculation derived on max jet pT < 150 GeV for 1/mt expansion => uncertainty doubled for max jet pT >150 (8% events)
 - at 2mt threshold, uncertainty increased by 50%, smoothly decreased to nominal uncertainty
- An additional 1.2 to all to cover NNLO/NLO

Phys. Lett. B 786 (2018) 223 gg+VBF \rightarrow (H* \rightarrow)ZZ($\mu_{off-shell}=5$) = 13 TeV, 36.1 fb⁻¹ gg+VBF→(H*→)ZZ(SM Events her backarounds 🛯 Uncertaintv 10^{-1} 10^{-2} 10^{-3} Events / SM 300 400 500 600 700 800 900

ATLAS off-shell measurement

- measurement of μ off-shell, Γ_H and $\kappa^2_{g,off-shell}/k^2_{g,on-shell}$
- Γ_H <14.4 (15.2) MeV at 95% CL

Phys. Lett. B 786 (2018) 223

		Obcorred	Expected		
		Observed	Median	$\pm 1 \sigma$	$\pm 2 \sigma$
$\mu_{ ext{off-shell}}$	$ZZ \rightarrow 4\ell$ analysis	4.5	4.3	[3.3, 5.4]	[2.7, 7.1]
	$ZZ \rightarrow 2\ell 2\nu$ analysis	5.3	4.4	[3.4, 5.5]	$\left[2.8,7.0\right]$
	Combined	3.8	3.4	[2.7, 4.2]	[2.3, 5.3]
$\Gamma_H/\Gamma_H^{ m SM}$	Combined	3.5	3.7	[2.9, 4.8]	[2.4, 6.5]
R_{gg}	Combined	4.3	4.1	[3.3, 5.6]	[2.7, 8.2]

CMS off-shell measurement

- Anomalous coupling could give rise to offshell enhancement
- Measure Γ_H and anomalous coupling at the same time
- Taking K-factor from NNLO signal, applied to bkg and interference
 - QCD uncertainty (mZZ) 1-10%
 - analysis uses m4l > 220 GeV, additional 10% uncertainty on B and I covering the different k-factors

6

CMS off-shell measurement

Width vs one anomalous coupling

4I, Run1+16+17 (5+19.7+80.2 fb⁻¹) data

Г_Н < 9.16 (13.7) MeV

CMS-PAS-HIG-18-002

	Parameter	Observed	Expected
-	$f_{a3}\cos\left(\phi_{a3}\right)$	$-0.0001^{+0.0005}_{-0.0015} \ [-0.16, 0.09]$	$0.0000^{+0.0019}_{-0.0019}$ [-0.082, 0.082]
a	$f_{a2}\cos\left(\phi_{a2}\right)$	$0.0004^{+0.0026}_{-0.0007} \ [-0.006, 0.025]$	$0.0000^{+0.0030}_{-0.0023}$ [-0.021, 0.035]
	$f_{\Lambda 1}\cos\left(\phi_{\Lambda 1} ight)$	$0.0000^{+0.0035}_{-0.0008} \ [-0.21, 0.09]$	$0.0000^{+0.0012}_{-0.0006}$ [-0.059, 0.032]
	$f_{\Lambda 1}^{Z\gamma}\cos\left(\phi_{\Lambda 1}^{Z\gamma} ight)$	$0.000^{+0.355}_{-0.009} \left[-0.17, 0.61 ight]$	$0.000^{+0.009}_{-0.010} \ [-0.10, 0.34]$

F_H HL projection, CMS

CMS projection, 4I alone, based on the CMS analysis CMS-18-002 -Scenario 2 theoretical unc: 1/2 expect ggZZ k-factor

At 3 ab⁻¹ $\Gamma_{\rm H} = 4.2 + 1.1 \, \text{MeV}$ $\Gamma_{\rm H} < 6 \, {\rm MeV}$

Summary

- Both ATLAS and CMS have Run2 off-shell measurements out
 - ATLAS : Γ_H <14.4 MeV (2l2v +4l on 2016 data)
 - CMS: Γ_H < 9.16 MeV (4I on Run1+2016+2017 data)
 - anomalous couplings were measured at the same time
 - benefit from theorist's recents on higher order corrections
- Projections on HL-LHC was made, $\Gamma_H = 4.2 + 1._{-1.1}$ MeV

