LHC Higgs X-section WG-2 CERN 10.12.2018

- BSM Benchmarks -

Mingshui Chen, Marco Delmastro, Chris Hays, Predrag Milenovic, David Marzocca, Francesco Riva

Higgs and EW Physics

Precision SM Measurements in Higgs physics...why?

- 1) Indirect searches of BSM
- 2) Test of how well we know the SM

Established framework: EFT*

$$\mathcal{L}^{EFT} = \mathcal{L}^{SM} + \sum_{i} c_i \frac{\mathcal{O}}{M^2} + \cdots$$

for 2), we want this as general as possible (for a nice parametrisation in this case, see last YR, <u>1610.07922</u>)

* Anomalous couplings lower SM cutoff and are an EFT

...as general as possible, model independent.

- Difficult in practice affects VI affects VI
- Inefficient (e.g. nearly flat direction $\lambda_Z \approx -(\delta g_{1,Z})_{1411.0669}$
- Restricting assumptions appear in most

analyses (e.g. flavour universality)

- More is learnt about the SM when it's tested

against specific BSM hypotheses

BSM Benchmarks

Document that summarizes classes of BSM scenarios and matches to EFT

- Useful for experiments to motivate more sharply specific searches
- →Useful for theorists to interpret exp. results in EFT language
- *Leads to educated choices of subsets of operators

BSM Benchmarks

Largest effects: at tree level, when NP Φ couples to SM as, $\Phi \mathcal{O}_{SM}$

- 1) Composite Higgs models Vecchi
- 2) Generic Minimal SM extension

deBlas, Criado, Perez-Victoria, Santiago

- 3) Extended scalar sectors Dawson, Murphy
- 4) Strongly interacting vectors Liu, Wang

BSM Benchmarks

Largest effects: at tree level, when NP Φ couples to SM as, $\Phi \mathcal{O}_{SM}$

- 1) Composite Higgs models Vecchi
- 2) Generic Minimal SM extension deBlas, Criado, Perez-Victoria, Santiago
- 3) Extended scalar sectors Dawson, Murphy
- 4) Strongly interacting vectors

Symmetry can lead to first interactions with NP $\Phi^2 \mathcal{O}_{SM}$

5) New Physics at loop level Henning

HXSWG Document

All contributions have arrived

Introduction missing

Document will provide a dictionary between class of models and class of processes

1) Composite Higgs Luca Vecchi

Guiding table: operators <-> processes (Universal Theories)

		Main effects in (Low-energy)	Main effects in (high-energy)
Operato	ors (SILH)	Higgs physics	2->2 physics
•			
Operator name	Operator definition	Main On-shell (Higgs)	Dominant Off-shell
\mathcal{O}_H	$\frac{1}{2} \partial_{\mu} (H^{\dagger} H) \partial^{\mu} (H^{\dagger} H)$	$h \to \psi \bar{\psi}, VV^* \text{ at } \lesssim O(10\%)$	$V_L V_L \rightarrow V_L V_L, hh$
\mathcal{O}_T	$\frac{1}{2} (H^{\dagger} \overleftrightarrow{D_{\mu}} H) (H^{\dagger} \overleftrightarrow{D^{\mu}} H)$	$h \to ZZ^*$ at $\lesssim O(0.1\%)$	$V_L V_L o V_L V_L, hh$
\mathcal{O}_6	$\lambda_h (H^\dagger H)^3$	None	h ightarrow hh
\mathcal{O}_ψ	$y_{\psi} \ \overline{\psi}_L H \psi_R(H^{\dagger}H)$	$h \to \psi \bar{\psi} \text{ at } \lesssim O(10\%)$	$V_L V_L \to t\bar{t}$
\mathcal{O}_W	$\frac{i}{2} g(H^{\dagger}\sigma^{i} \overleftrightarrow{D_{\mu}} H) (D_{\nu} W^{\mu\nu})^{i}$	$h \to VV^*, V^* \to hV \text{ at } \lesssim O(0.1\%)$	$q\bar{q} \rightarrow V_L V_L$
\mathcal{O}_B	$\frac{i}{2} g'(H^{\dagger} \overrightarrow{D_{\mu}} H)(\partial_{\nu} B^{\mu\nu})$	$h \to VV^*$ at $\lesssim O(0.1\%)$	$q\bar{q} \to V_L V_L$
\mathcal{O}_{HW}	$i g (D^{\mu} H)^{\dagger} \sigma^{i} (D^{\nu} H) W^{i}_{\mu\nu}$	$h \to \gamma Z \text{ at } \lesssim O(10\%)$	$q\bar{q} \rightarrow V_L V_L$
\mathcal{O}_{HB}	$ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$	$h \to \gamma Z \text{ at } \lesssim O(10\%)$	$q\bar{q} \rightarrow V_L V_L$
\mathcal{O}_{g}	$g_s^2 H^\dagger H G^a_{\mu u} G^{a\mu u}$	$h \to gg \text{ at } \lesssim O(10\%)$	$pp \rightarrow V_L V_L, hh$
\mathcal{O}_γ	$g'^2 H^\dagger H B_{\mu u} B^{\mu u}$	$h \to \gamma \gamma, \gamma Z, ZZ \text{ at } \lesssim O(10\%)$	$V_L V_L \to \gamma \gamma, \gamma Z, ZZ$
\mathcal{O}_{2G}	$-\frac{1}{2}g_s^2(D^{\mu}G_{\mu\nu})^a(D_{\rho}G^{\rho\nu})^a$	None	$pp \rightarrow jj$
\mathcal{O}_{2W}	$-\frac{1}{2}g^2(D^{\mu}W_{\mu\nu})^i(D_{\rho}W^{\rho\nu})^i$	None	$q \bar{q} ightarrow \psi \bar{\psi}, VV$
\mathcal{O}_{2B}	$-\frac{1}{2}g^{\prime 2}(\partial^{\mu}B_{\mu u})(\partial_{ ho}B^{ ho u})$	None	$q \bar{q} ightarrow \psi \bar{\psi}, VV$
\mathcal{O}_{3G}	$g_s^3 f_{abc} G^{a u}_\mu G^{b ho}_ u G^{c\mu}_ ho$	None	pp ightarrow jj
\mathcal{O}_{3W}	$g^3 \epsilon_{ijk} W^{i u}_\mu W^{j ho}_ u W^{j ho}_ u W^{k\mu}_ u$	None	$q \bar{q} ightarrow VV$
	· · · ·	••	Subleading

1) Composite Higgs Luca Vecchi

Composite Higgs:

1) Composite Higgs Luca Vecchi

Assumptions <-> EFT:

Na Poi Coul	ive wer nting	Only BSM Scalar	Only BSM Vector ii	EW-BSM Ateraction	٨	
~~~·						
Coefficient	Generic CH	Light $j = 0$	Light $j = 1$	Only Higgs	SU(2) custodial	NGB-Higgs
$c_{H,\psi}$	$g_{*}^{2}$	$g_*^2$	$g_*^2$	$g_{*}^{2}$	$g_*^2$	$g_*^2$
$c_T$	$g_*^2$	$g_{*}^{2}$	$g_*^2$	$g_*^2$	$g_*^2  imes rac{g'^2}{16\pi^2}$	$g_*^2$
$c_6$	$rac{g_*^4}{\lambda_h}$	$rac{g_*^4}{\lambda_h}$	$rac{g_*^4}{\lambda_h}$	$rac{g_*^4}{\lambda_h}$	$rac{g_*^4}{\lambda_h}$	$\left  \frac{g_*^4}{\lambda_h} \times \left( \frac{g_{\mathcal{G}}^2}{g_*^2} \text{ or } \frac{g_{\mathcal{G}}^2}{16\pi^2} \right) \right $
$c_{W,B}$	1	$\frac{g_*^2}{16\pi^2}$	1	$\frac{g_*^2}{16\pi^2}$	1	1
$c_{HW,HB}$	1	$\frac{g_*^2}{16\pi^2}$	$\frac{g_*^2}{16\pi^2}$	$\frac{g_*^2}{16\pi^2}$	1	1
$c_{g,\gamma}$	1	$\frac{g_*^2}{16\pi^2}$	$\frac{g_*^2}{16\pi^2}$	$\frac{g_*^2}{16\pi^2}$	1	$\frac{g_{\mathcal{G}}^2}{16\pi^2}$
$c_{2G,2W,2B}$	$\frac{1}{g_*^2}$	$rac{1}{g_*^2}  imes rac{g_*^2}{16\pi^2}$	$\frac{1}{g_*^2}$	$\frac{1}{g_*^2}  imes \frac{g_*^2}{16\pi^2}$	$\frac{1}{g_*^2}$	$\frac{1}{g_*^2}$
$c_{3G,3W}$	$\frac{1}{g_*^2}$	$\frac{1}{g_*^2}  imes \frac{g_*^2}{16\pi^2}$	$\frac{1}{g_*^2}  imes \frac{g_*^2}{16\pi^2}$	$\frac{1}{g_*^2} \times \frac{g_*^2}{16\pi^2}$	$\frac{1}{g_*^2}$	$\frac{1}{g_*^2}$

deBlas, Criado, Perez-Victoria, Santiago (summarising 1711.10391)

deBlas, Criado, Perez-Victoria, Santiago (summarising 1711.10391)

### Simple extension with just one resonance:

	Scalars	$\mathcal{S}$ $(1,1)_0$ (1,	$\varphi$ ( $\Xi$ $(2)_{1/2}$ ( $1, 3$	$\Xi_1$ $)_0$ $(1,3)_1$	$\begin{array}{c} \Theta_1 \\ (1,4)_{1/2} \end{array}$	$\begin{array}{c}\Theta_{3}\\(1,4)_{3/2}\end{array}$	SM qu + of l	antum numbers the resonance
	$egin{array}{c} N \ (1,1)_0 \end{array}$	$E_{(1,1)_{-1}}$	$\Delta_1$ (1,2) _{-1/2}	$\Delta_3$ (1,2) _{-3/2}	${\Sigma \over (1,3)_0}$	$\Sigma_1$ $(1,3)_{-1}$		
Fermions	$U \\ (3,1)_{2/3}$	D (3,1) _{-1/3}	$Q_1$ (3,2) _{1/6}	$Q_5$ (3,2) _{-5/6}	$Q_7 \ (3,2)_{7/6}$		$T_2 \ (3,3)_{2/3}$	
		Vectors	$\begin{array}{cc} \mathcal{B} & \mathcal{B} \\ \left(1,1\right)_{0} & \left(1,\right. \end{array}$	$\begin{array}{ccc} \mathcal{B}_1 & \mathcal{W} \\ 1 \end{pmatrix}_1 & (1,3)_0 \end{array}$	$ \begin{array}{c} \mathcal{W}_1 \\ (1,3)_1 \end{array} $			-

deBlas, Criado, Perez-Victoria, Santiago (summarising 1711.10391)

	Name	Operator	Fields that generate it
	$\star \mathcal{O}_{\phi}$	$ \phi ^{6}$	$\mathcal{S}, \varphi, \Xi, \Xi_1, \Theta_1, \Theta_3, \mathcal{B}_1, \mathcal{W}$
	$\star \mathcal{O}_{\phi \Box}$	$ \phi ^2 \square  \phi ^2$	$\mathcal{S},\Xi,\Xi_1,\mathcal{B},\mathcal{B}_1,\mathcal{W},\mathcal{W}_1$
	$\mathcal{O}_{\phi D}$	$ \phi^\dagger D_\mu \phi ^2$	$\Xi, \Xi_1, \mathcal{B}, \mathcal{B}_1, \mathcal{W}, \mathcal{W}_1$
	$\bullet \mathcal{O}_{e\phi}$	$ \phi ^2 \overline{l}_L \phi e_R$	$\mathcal{S}, \varphi, \Xi, \Xi_1, E, \Delta_1, \Delta_3, \Sigma, \Sigma_1, \mathcal{B}, \mathcal{B}_1, \mathcal{W}, \mathcal{W}_1$
	$ullet \mathcal{O}_{d\phi}$	$ \phi ^2 ar q_L \phi d_R$	$\mathcal{S}, \varphi, \Xi, \Xi_1, D, Q_1, Q_5, T_1, T_2, \mathcal{B}, \mathcal{B}_1, \mathcal{W}, \mathcal{W}_1$
ACC and	$\star \mathcal{O}_{u\phi}$	$ \phi ^2 ar q_L \phi u_R$	$\mathcal{S}, \varphi, \Xi, \Xi_1, U, Q_1, Q_7, T_1, T_2 \mathcal{B}, \mathcal{B}_1, \mathcal{W}, \mathcal{W}_1$
EWPT	$\mathcal{O}_{\phi l}^{(1)}$	$(\bar{l}_L \gamma^\mu l_L)(\phi^\dagger i \overleftrightarrow{D}_\mu \phi)$	$N, E, \Sigma, \Sigma_1, \mathcal{B}$
	${\cal O}_{\phi l}^{(3)}$	$(\bar{l}_L \gamma^\mu \sigma^a l_L) (\phi^\dagger i \overset{\leftrightarrow}{D}_\mu^a \phi)$	$N, E, \Sigma, \Sigma_1, \mathcal{W}$
	$\mathcal{O}_{\phi q}^{(1)}$	$(\bar{q}_L \gamma^\mu q_L) (\phi^\dagger i \overleftrightarrow{D}_\mu \phi)$	$U, D, T_1, T_2, \mathcal{B}$
	$\mathcal{O}_{\phi q}^{(3)}$	$(\bar{q}_L \gamma^\mu \sigma^a q_L) (\phi^\dagger i \overleftrightarrow{D}^a_\mu \phi)$	$U, D, T_1, T_2, \mathcal{W}$
	$\mathcal{O}_{\phi e}$	$(\bar{e}_R \gamma^\mu e_R)(\phi^\dagger i \overleftrightarrow{D}_\mu \phi)$	$\Delta_1,\Delta_3,\mathcal{B}$
	$\mathcal{O}_{\phi u}$	$(\bar{u}_R \gamma^\mu u_R)(\phi^\dagger i \overleftrightarrow{D}_\mu \phi)$	$Q_1,Q_7,\mathcal{B}$
	$\mathcal{O}_{\phi d}$	$(ar{d}_R\gamma^\mu d_R)(\phi^\dagger i \overleftrightarrow{D}_\mu \phi)$	$Q_1,Q_5,\mathcal{B}$
	$\mathcal{O}_{\phi ud}$	$(\bar{u}_R \gamma^\mu d_R) (\phi^\dagger i D_\mu \tilde{\phi})$	$Q_1,\mathcal{B}_1$

#### Generated operator(s), Warsaw basis

deBlas, Criado, Perez-Victoria, Santiago (summarising 1711.10391)

### Many models contribute to EW precision data:

Assume custodial symmetry (Rather than neglecting operators)

Quark bidoublet:  $Q_1 \sim (3,2)_{1/6}$  and  $Q_7 \sim (3,2)_{7/6}$ 

$(C_{u\phi})_{33}$	
$\frac{ \lambda ^2}{M^2}$	

Neutral	vector	triplet:	${\cal W}\sim$	$(1,3)_0$
---------	--------	----------	----------------	-----------

$C_{\phi}$	$C_{\phi \Box}$	$(C_{\psi\phi})_{ij}$	$(C^{(3)}_{\phi\psi})_{ij}$
$-\frac{\lambda_\phi(g^\phi)^2}{M^2}$	$-\frac{3(g^\phi)^2}{8M^2}$	$-\frac{y_{ji}^{\psi *}(g^{\phi})^2}{4M^2}$	$-\frac{(g^\psi)_{ij}(g^\phi)}{4M^2}$

Pair of vector singlets:  $\mathcal{B} \sim (1,1)_0$  and  $\mathcal{B}_1 \sim (1,1)_1$ 

$C_{\phi}$	$C_{\phi\square}$	$(C_{\psi\phi})_{ij}$
$-rac{4\lambda_\phi(g^\phi)^2}{M^2}$	$-\frac{3(g^\phi)^2}{2M^2}$	$-\frac{y_{ji}^{\psi *}(g^{\phi})^{2}}{M^{2}}$

### 3) More details on Extended Scalar Sectors

Dawson, Murphy (summarising 1704.07851)

### 3) More details on Extended Scalar Sectors Dawson, Murphy (summarising 1704.07851)

Scalar models parametrised through physical  $\alpha, \beta$ 

$$\begin{pmatrix} h \\ \mathcal{H} \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} h' \\ \varphi \end{pmatrix}$$

 $\tan \beta_s = v_h / v_{\phi}.$ 

 $\operatorname{Re}(\phi^0) = v_\phi + \varphi$ 

Model	c _H	$\mathbf{c_6}\lambda_{\mathbf{SM}}$		$\mathbf{c_t}$	$\mathbf{c_b} = \mathbf{c}_{ au}$
Real Singlet: explicit $\mathbb{X}_{\mathbb{X}}$	$\tan^2 \alpha$	$\tan^2 \alpha \left( \lambda_{\alpha} - \frac{m_2}{v} \tan \alpha \right)$	0	0	0
Real Singlet: spontaneous $\mathbb{Z}_{\mathbb{X}}$	$\tan^2 \alpha$	0	0	0	0
2HDM: Type I	0	$-\cos^2\left(\beta-\alpha\right)\frac{\Lambda^2}{v^2}$	0	$-\cos\left(\beta-\alpha\right)\cot\left(\beta\right)$	$-\cos\left(\beta-\alpha\right)\cot\left(\beta\right)$
2HDM: Type II	0	$-\cos^2\left(\beta-\alpha\right)\frac{\Lambda^2}{v^2}$	0	$-\cos\left(\beta-\alpha\right)\cot\left(\beta\right)$	$\cos\left(\beta-\alpha\right)\tan\left(\beta\right)$
Real Triplet	$-2c_T$	$c_T\lambda_lpha$	$\checkmark$	$c_T$	$c_T$
Complex Triplet	$c_T$	$-c_T\left(\lambda_{\alpha 1}-\frac{\lambda_{\alpha 2}}{2}\right)$	$\checkmark$	$-c_T$	$-c_T$
Quartet: $Y = \frac{1}{2}$	0	$-2c_T \frac{\Lambda^2}{v^2}$	$\checkmark$	0	0
Quartet: $Y = \frac{3}{2}$	0	$\frac{2}{3}c_T\frac{\Lambda^2}{v^2}$	$\checkmark$	0	0

### 3) More details on Extended Scalar Sectors Dawson, Murphy (summarising 1704.07851)

Scalar models parametrised through physical  $\alpha, \beta$ 

$$\begin{pmatrix} h \\ \mathcal{H} \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} h' \\ \varphi \end{pmatrix}$$

 $\tan \beta_s = v_h / v_{\phi}.$ 

 $\operatorname{Re}(\phi^0) = v_\phi + \varphi$ 

Model	c _H	$\mathbf{c_6}\lambda_{\mathbf{SM}}$		$\mathbf{c_t}$	$\mathbf{c_b} = \mathbf{c}_{ au}$
Real Singlet: explicit $\mathbb{Z}_{\mathbb{X}}$	$\tan^2 \alpha$	$\tan^2 \alpha \left( \lambda_\alpha - \frac{m_2}{v} \tan \alpha \right)$	0	0	0
Real Singlet: spontaneous $\mathbb{Z}_{\mathbb{X}}$	$\tan^2 \alpha$	0	0	0	0
2HDM: Type I	0	$-\cos^2\left(\beta-\alpha\right)\frac{\Lambda^2}{v^2}$	0	$-\cos\left(\beta-\alpha\right)\cot\left(\beta\right)$	$-\cos\left(\beta-\alpha\right)\cot\left(\beta\right)$
2HDM: Type II	0	$-\cos^2\left(\beta-\alpha\right)\frac{\Lambda^2}{v^2}$	0	$-\cos\left(\beta-\alpha\right)\cot\left(\beta\right)$	$\cos\left(\beta - \alpha\right) \tan\left(\beta\right)$
Real Triplet	$-2c_T$	$c_T\lambda_lpha$	$\checkmark$	$c_T$	$c_T$
Complex Triplet	$c_T$	$-c_T\left(\lambda_{\alpha 1}-\frac{\lambda_{\alpha 2}}{2}\right)$	$\checkmark$	$-c_T$	$-c_T$
Quartet: $Y = \frac{1}{2}$	0	$-2c_T \frac{\Lambda^2}{v^2}$	$\checkmark$	0	0
Quartet: $Y = \frac{3}{2}$	0	$rac{2}{3}c_Trac{\Lambda^2}{v^2}$	$\checkmark$	0	0

### 3) More details on Extended Scalar Sectors Dawson, Murphy

(summarising 1704.07851)

### Constraints from T-parameter

Model	ρ	$3\sigma$ upper limit on $\beta$		
Singlet	1	none		
2HDM	1	none		
Real Triplet	$\sec^2\beta$	0.030		
Complex Triplet	$2\left(3-\cos 2\beta\right)^{-1}$	0.014		
Quartet: $Y = \frac{1}{2}$	$7\left(4+3\cos 2\beta\right)^{-1}$	0.033		
Quartet: $Y = \frac{3}{2}$	$\left(2 - \cos 2\beta\right)^{-1}$	0.010		

Da Liu, Lian-Tao Wang

Models where transverse polarisations are strongly coupled (Remedios),

$$\mathcal{O}_{3W}=rac{1}{3!}g\epsilon_{abc}W^{a
u}_{\mu}W^b_{
u
ho}W^{c
ho\mu}$$

Model	$\mathcal{O}_{2V}$	$\mathcal{O}_{3V}$	$\mathcal{O}_{HW}$	$\mathcal{O}_{HB}$	$\mathcal{O}_V$	$\mathcal{O}_{VV}$	$\mathcal{O}_{H}$	$\mathcal{O}_{y_\psi}$
Remedios	1	<b>g</b> *						
Remedios+MCHM	1	<b>g</b> *	g	g'	gv	g _v ²	<b>g</b> * ²	$y_{\psi} g_*^2$
Remedios+ <i>ISO</i> (4)	1	<b>g</b> *	<b>g</b> *	g'	gv	$g_V^2$	$\lambda_h$	$y_\psi \lambda_h$

Da Liu, Lian-Tao Wang

Da Liu, Lian-Tao Wang

Models where transverse polarisations are strongly coupled (Remedios),

 $\mathcal{O}_{3W}=rac{1}{3!}g\epsilon_{abc}W^{a
u}_{\mu}W^b_{
u
ho}W^{c
ho\mu}$ 

Model	$\mathcal{O}_{2V}$	$\mathcal{O}_{3V}$	$\mathcal{O}_{HW}$	$\mathcal{O}_{HB}$	$\mathcal{O}_V$	$\mathcal{O}_{VV}$	$\mathcal{O}_{H}$	$\mathcal{O}_{y_\psi}$
Remedios	1	<b>g</b> *						
Remedios+MCHM	1	<b>g</b> *	g	g'	gv	g _V ²	<b>g</b> * ²	$y_{\psi} g_*^2$
Remedios+ISO(4)	1	<b>g</b> *	<b>g</b> *	g′	gv	g _V ²	$\lambda_h$	$y_\psi \lambda_h$

... # Higgs strongly coupled

Da Liu, Lian-Tao Wang

Models where transverse polarisations are strongly coupled (Remedios),

 $\mathcal{O}_{3W}=rac{1}{3!}g\epsilon_{abc}W^{a
u}_{\mu}W^b_{
u
ho}W^{c
ho\mu}$ 

Model	$\mathcal{O}_{2V}$	$\mathcal{O}_{3V}$	$\mathcal{O}_{HW}$	$\mathcal{O}_{HB}$	$\mathcal{O}_V$	$\mathcal{O}_{VV}$	$\mathcal{O}_{H}$	$\mathcal{O}_{y_\psi}$
Remedios	1	<b>g</b> *						
Remedios+MCHM	1	<b>g</b> *	g	g'	gv	$g_V^2$	<b>g</b> * ²	$y_{\psi}g_*^2$
Remedios+ISO(4)	1	<b>g</b> *	<b>g</b> *	g'	gv	$g_V^2$	$\lambda_h$	$y_\psi \lambda_h$
$\ddagger$ Higgs strongly coupled Large effects in $V_L V_L$ Large effects in $V_T V_T$								

Important to motivate TGC or VH analysis

5) Loop effects Henning

A Z2 accidental symmetry could lead to BSM-SM interactions:



First effects at loop level - calculable in weakly coupled UV

Some operators can only arise at loop level if
 UV = weakly coupled particles of spin<=1/Arzt,Einhorn</li>

Patterns:  $vs. v. contend of c_{3W} \sim spin(\Phi)$ 

5) Loop effects

Explicit Examples: Light scalar stops  $\Phi = (\tilde{Q}_3, \tilde{t}_R)^T$  $\mathcal{L} = \Phi^{\dagger} \left( -D^2 - m^2 - U \right) \Phi,$ 

$c_{GG} = \frac{h_t^2}{(4\pi)^2} \frac{1}{12} \left[ \left( 1 + \frac{1}{12} \frac{{g'}^2 c_{2\beta}}{h_t^2} \right) - \frac{1}{2} \frac{X_t^2}{m_t^2} \right]$	$c_{WB} = -\frac{h_t^2}{(4\pi)^2} \frac{1}{24} \left[ \left( 1 + \frac{1}{2} \frac{g^2 c_{2\beta}}{h_t^2} \right) - \frac{4}{5} \frac{X_t^2}{m_{\tilde{t}}^2} \right]$
$c_{WW} = \frac{h_t^2}{(4\pi)^2} \frac{1}{16} \left[ \left( 1 - \frac{1}{6} \frac{g'^2 c_{2\beta}}{h_t^2} \right) - \frac{2}{5} \frac{X_t^2}{m_{\tilde{t}}^2} \right]$	$c_W = \frac{h_t^2}{(4\pi)^2} \frac{1}{40} \frac{X_t^2}{m_{\tilde{t}}^2}$
$c_{BB} = \frac{h_t^2}{(4\pi)^2} \frac{17}{144} \left[ \left( 1 + \frac{31}{102} \frac{g^{\prime 2} c_{2\beta}}{h_t^2} \right) - \frac{38}{85} \frac{X_t^2}{m_{\tilde{t}}^2} \right]$	$c_B = \frac{h_t^2}{(4\pi)^2} \frac{1}{40} \frac{X_t^2}{m_{\tilde{t}}^2}$

$$\begin{split} c_{3G} &= \frac{g_{\pi}^{2}}{(4\pi)^{2}} \frac{1}{20} \\ c_{3W} &= \frac{g^{2}}{(4\pi)^{2}} \frac{1}{20} \\ c_{2G} &= \frac{g_{\pi}^{2}}{(4\pi)^{2}} \frac{1}{20} \\ c_{2G} &= \frac{g_{\pi}^{2}}{(4\pi)^{2}} \frac{1}{20} \\ c_{2W} &= \frac{g^{2}}{(4\pi)^{2}} \frac{1}{20} \\ c_{2W} &= \frac{g^{2}}{(4\pi)^{2}} \frac{1}{20} \\ c_{2B} &= \frac{g^{\prime 2}}{(4\pi)^{2}} \frac{1}{20} \end{split} \\ c_{R} &= \frac{h_{t}^{4}}{(4\pi)^{2}} \frac{1}{2} \left[ \left( 1 + \frac{1}{2} \frac{g^{2}c_{2\beta}}{h_{t}^{2}} \right)^{2} - \frac{1}{2} \frac{X_{t}^{2}}{m_{t}^{2}} \left( 1 + \frac{1}{2} \frac{g^{2}c_{2\beta}}{h_{t}^{2}} \right) + \frac{1}{10} \frac{X_{t}^{4}}{m_{t}^{4}} \right] \\ c_{R} &= \frac{h_{t}^{4}}{(4\pi)^{2}} \frac{1}{2} \left[ \left( 1 + \frac{1}{2} \frac{g^{2}c_{2\beta}}{h_{t}^{2}} \right)^{2} - \frac{3}{2} \frac{X_{t}^{2}}{m_{t}^{2}} \left( 1 + \frac{1}{12} \frac{(3g^{2} + g^{\prime 2})c_{2\beta}}{h_{t}^{2}} \right) + \frac{3}{10} \frac{X_{t}^{4}}{m_{t}^{4}} \right] \\ c_{D} &= \frac{h_{t}^{2}}{(4\pi)^{2}} \frac{1}{20} \frac{X_{t}^{2}}{m_{t}^{2}} \\ c_{2B} &= \frac{g^{\prime 2}}{(4\pi)^{2}} \frac{1}{20} \end{aligned}$$

Useful for loop-level operators

### Conclusions

EFT important for BSM searches and as generic SM test Generic analysis difficult

- → Important to provide list of EFT BSM models with well-defined hypotheses (Benchmarks)
- -> Document ready early 2019

...more benchmarks...

### Conclusions

 Identify processes where EFT particularly simple or where dedicated analysis particularly advantageous

Ex: VH at high-E modified by a single dim-6 effect  $u_L, d_L$ ,  $\phi^{\pm}, \phi^0$  $u_L, d_L$ ,  $\phi^{\mp}, \phi^0$ 

Ex: WZ – angular information improves analysis