EFT tools & validation part I – SMEFT LO

Ilaria Brivio

Niels Bohr Institute, Copenhagen

The SMEFT

fundamental assumptions:

- new physics nearly decoupled: $\Lambda \gg (v, E)$
- ▶ at the accessible scale: **SM** fields + symmetries

a Taylor expansion in canonical dimensions (ν/Λ or E/Λ):

$$\mathcal{L}_{\mathrm{SMEFT}} = \mathcal{L}_{\mathrm{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \frac{1}{\Lambda^3} \mathcal{L}_7 + \frac{1}{\Lambda^4} \mathcal{L}_8 + \dots$$

 $\mathcal{L}_n = \sum_i C_i \mathcal{O}_i^{d=n}$ C_i free parameters (Wilson coefficients)

 \mathcal{O}_i invariant operators that form a complete, non redundant basis

More than a parameterization

by construction the SMEFT is always a valid QFT and a valid description of Nature

(assuming SM sym + fields and at $E \ll \Lambda$)

by construction the SMEFT is always a valid QFT and a valid description of Nature

(assuming SM sym + fields and at $E \ll \Lambda$)

we can do: gauge invariant calculations, loops, RGE, etc.
 systematically improvable with higher orders in loop+EFT expansions

(Alonso), Jenkins, Manohar, Trott 1308, 2627, 1310.4838, 1312.2014 Grojean, Jenkins, Manohar, Trott 1301.2588 Elias-Miró, Grojean, Gupta, Marzocca 1312.2928 Alonso, Chang, Jenkins, Manohar, Shotwell 1405.0486 Ghezzi, Gomez-Ambrosio, Passarino, Uccirati 1505.03706 Pruna, Signer 1408, 3565 Hartmann, (Shepherd), Trott 1505.02646, 1507.03568, 1611.09879 Gauld, Pecjak, Scott 1512.02508 Deutschmann, Duhr, Maltoni, Vryonidou 1708.00460 Dawson et al 1801.01136, 1807.11504, 1808.05948, 1812.00214 Dedes, Paraskevas, Rosiek, Suxho, Trifyllis 1805.00302

by construction the SMEFT is always a valid QFT and a valid description of Nature

(assuming SM sym + fields and at $E \ll \Lambda$)

we can do: gauge invariant calculations, loops, RGE, etc.
 systematically improvable with higher orders in loop+EFT expansions

we can set an ambitious & general goal:

use it as a self-consistent theory and measure its parameters

 \rightarrow a solid, systematic **probe of NP**, able to capture *any* BSM effect \rightarrow a truly **universal language** for future data interpretation

goal:

use the SMEFT as a self-consistent theory and measure its parameters

<u>necessary</u> to retain **all** the operators.
 generally not possible to make a selection *a priori*.
 correspondence to anomalous couplings is *basis dependent*.

goal:

Example

use the SMEFT as a self-consistent theory and measure its parameters

necessary to retain all the operators. generally not possible to make a selection a priori. correspondence to anomalous couplings is basis dependent.

BSM model $\rightarrow W^a_{\mu\nu}D^{\mu}H^{\dagger}\sigma^aD^{\nu}H$ affecting

Going to Warsaw basis via EOM:

 $W^a_{\mu\nu}D^{\mu}H^{\dagger}\sigma^a D^{\nu}H \quad \mapsto \quad \mathcal{Q}_{HW}, \quad \mathcal{Q}_{HWB}, \quad \mathcal{Q}^{(3)}_{Hq}, \quad \mathcal{Q}^{(3)}_{Hl} + \text{Higgs ops.}$

goal:

use the SMEFT as a self-consistent theory and measure its parameters

 <u>necessary</u> to retain **all** the operators. generally not possible to make a selection *a priori*. correspondence to anomalous couplings is *basis dependent*.

goal:

use the SMEFT as a self-consistent theory and measure its parameters

- <u>necessary</u> to retain **all** the operators.
 generally not possible to make a selection *a priori*.
 correspondence to anomalous couplings is *basis dependent*.
 - \rightarrow S-matrices are basis independent only if all the operators are considered

goal:

use the SMEFT as a self-consistent theory and measure its parameters

- necessary to retain all the operators. generally not possible to make a selection a priori. correspondence to anomalous couplings is basis dependent.
 - \rightarrow S-matrices are basis independent only if all the operators are considered

• a **global fit** is required.

To make this happen one needs

- general tools for predictions
- control over the # of parameters

goal:

use the SMEFT as a self-consistent theory and measure its parameters

- <u>necessary</u> to retain **all** the operators.
 generally not possible to make a selection *a priori*.
 correspondence to anomalous couplings is *basis dependent*.
 - \rightarrow S-matrices are basis independent only if all the operators are considered
- a global fit is required.

To make this happen one needs

- general tools for predictions
- control over the # of parameters

set by observables +

accuracy chosen

goal:

use the SMEFT as a self-consistent theory and measure its parameters

<u>necessary</u> to retain **all** the operators.
 generally not possible to make a selection *a priori*.
 correspondence to anomalous couplings is *basis dependent*.

 \rightarrow S-matrices are basis independent only if all the operators are considered

a global fit is required.

To make this happen one needs

- general tools for predictions
- control over the # of parameters

idea: sequential strategy

- LO, resonance dominated processes
- + tails $((\bar{\psi}\psi)(\bar{\psi}\psi))$
- ► + NLO ~→ see talk by Eleni

Ilaria Brivio (NBI, Copenhagen)

set by observables +

accuracy chosen

goal:

use the SMEFT as a self-consistent theory and measure its parameters

<u>necessary</u> to retain **all** the operators.
 generally not possible to make a selection *a priori*.
 correspondence to anomalous couplings is *basis dependent*.

 \rightarrow S-matrices are basis independent only if all the operators are considered

The SMEFTsim package

an UFO & FeynRules model with*:

Brivio, Jiang, Trott 1709.06492 feynrules.irmp.ucl.ac.be/wiki/SMEFT

www backup

- the complete B-conserving Warsaw basis for 3 generations, including all complex phases and CP terms
- 2. automatic field redefinitions to have canonical kinetic terms
- 3. automatic parameter shifts due to the choice of an input parameters set

Main scope:

estimate tree-level $|A_{SM}A^*_{d=6}|$ interference terms \rightarrow theo. accuracy \gtrsim few %

 * at the moment only LO, unitary gauge implementation

Ilaria Brivio (NBI, Copenhagen)

EFT tools & validation – SMEFT LO

The SMEFTsim package

irmn ucl ac bo /wiki /SMEET
ITTID.UCI.dC.DE/WIKI/SIVIEFT

Pre-exported UFO files (include restriction cards)

Standard Model Effective Field Theory -- The SMEFTsim package

Authors

wk: SMEFT

Ilaria Brivio, Yun Jiang and Michael Trott

ilaria.brivio@nbi.ku.dk, yunjiang@nbi.ku.dk, michael.trott@cern.ch

NBIA and Discovery Center, Niels Bohr Institute, University of Copenhagen

	Set A		Set B	
	α scheme	m _W scheme	α scheme	m _W scheme
Flavor general SMEFT	SMEFTsim_A_general_alphaScheme_UFO.tar.gz	↓SMEFTsim_A_general_MwScheme_UFO.tar.gz	↓SMEFT_alpha_UFO.zip ↓	SMEFT_mW_UFO.zip 🕁
MFV SMEFT	SMEFTsim_A_MFV_alphaScheme_UFO.tar.gz	SMEFTsim_A_MFV_MwScheme_UFO.tar.gz 🕁	SMEFT_alpha_MFV_UFO.zip	SMEFT_mW_MFV_UFO.zip
U(3) ⁵ SMEFT	SMEFTsim_A_U35_alphaScheme_UFO.tar.gz 🕁	SMEFTsim_A_U35_MwScheme_UFO.tar.gz 🛃	SMEFT_alpha_FLU_UFO.zip	SMEFT_mW_FLU_UFO.zip 🕁

1. Internal validation: 2 independent versions (A, B)

process	coefficient	general a	general Mw	U(3)^5 α 2.6156	U(3)*5 Me 2 6768	MFV α 2.6156	NFV Nu 2 6785	p p > mu+ mu- NP=1	lq12211	851.56 5.7575	043.47 5.9407				
0+ 0- > N+ N-	SACIENE	0.059793	0.061373	0.059793	0.051373	0.059793	0.061373	p p > mu+ mu- NP=1	tu			812099	817488	\$19:35	242.07
0+ 0- > W+ W- NP=1	HL3		4 7707	0.10296	0.094337	0.10295	0.094337	p p > mu+ mu- NP=1	lu2211	851.05 5.622	843.29 5.7365				
e+ e- > w+ w- NP=1	HL311	0.095776	0.10282	-	-	-	-	p p > u u-	SWlimit	4.479×10 ⁴ 36717.	4.479×10 ⁶ 36717.	4.479×10 ⁶ 36717.	4.479×10 ⁴ 36717.	4.479×10 ⁶ 36717.	4.479×10 ⁶ 36717.
e+ e- > w+ w- NP=1	w	0.10004	0.11063	0.10504	0.11063	0.10304	0.11063	$p \ p \ > u \ u - \ NP_{\times} 1$	Deltaluqql					4.4174×10 ⁴ 42.604.	4.4167×10 ⁶ 42.647.
$e+\ e-\ >\ w+\ w-\ NP=1$	Weil	4.9895 0.10855	5.0548	4.9895 0.10855	5.0545			p p > u u- NP=1	Delta2uu					4.4174×10 ⁴	4.4167×10 ⁴
e + e - > z h	SMlimit	0.013009 0.000032914	0.01302 0.000033124	0.013009 0.000032914	0.01302 0.000033124	0.013009 0.000032914	0.01302 0.000033124	p p > u u- NP+1	qql			4.4205×10^{4}	4.4208×10^{4}	4.4203 × 10 ⁴	4.4205×10 ⁶
e+ e- > z h NP=1	eW			0.013009 0.000032914	0.01302 0.000033124	0.013009	0.01302 0.000033124	pp > u u- NP=1	0011212	4.4176×10^4	4.4169×10^{6}			-	
$e \leftarrow e - \ > \ z \ h \ NP \pm 1$	eb/11	1.9953 0.0050475	0.01302 0.000033124					0.0.1.0.0.00.1		42 604.	42 648.	4.4186×10^4	4.4178×10^{4}		
$e \leftarrow e - \ > \ z \ h \ NP \pm 1$	He			1.1756	1.1538	1.1756	1.1835	0 0 x 0 0 NP-1				42.434.	42512.	4.3896×10^{4}	4.2896×10 ⁴
$e \leftarrow e - \ > \ z \ h \ NP + 1$	Hell	1.1756	1.1835							4.4297×10^{4}	4.4169×10^{6}			51992.	51992.
$e \leftarrow e - \ > \ z \ h \ NP + 1$	HNB	0.040274	0.036476	0.040274	0.036476	0.040274	0.036476	pp / c c mil	4081111	42 124.	42 648.	4 4177 × 10 ⁴	4 417 × 104	4 4174 × 10 ⁴	A 4167 v 10 ⁶
pp>ds-	SMlimit	655 390.	655 390.	685 390.	655 390.	655 390.	685 390.	ppsuu-mest	dndar			42 607.	42651.	42.604.	42 647.
pp>ds-NP+1	Delta2od1	11050.		11 858.	11050.	690 240.	690 240.	p p > u u- NP+1	quqdlllll	42 604.	42 648.	-	-	-	
nn - d - NP-1	Deltadio					9319.7 703760.	9319.7 703760.	p p > u u- NP=1	-0			42 604.	42 648.	42.604.	42 647.
pp:dx-NP-1	Deltarbi					9607.7 690240.	9607.7	p p > u u- NP=1	u811	4.4166×10* 42664.	4.4169×10" 42648.				
pp:de.Mbd				690 240 .	690 240 .	9319.7	9319.7	p p > u u- NP=1	uG			4.4272×10 ⁴ 45585.	4.4265×10 ⁴ 45625.	4.4174×10 ⁴ 42604.	4.4167×10 ⁴ 42647.
pp>ds-nP+1	GW	697 740	690.240	9319.7	9319.7			$p \ p \ > u \ u - \ NP_{\times} 1$	u\$11	4.4276×10 ⁴ 45716.	4.4169×10 ⁶ 42648.				
pp>ds-nest	GW12	9950.4	9319.7					$p \ p \ > u \ u - \ NP_{\times} 1$	uH			4.4176×10 ⁴ 42604.	4.4169×10 ⁴ 42648.	4.4174×10 ⁴ 42.604.	4.4168×10 ⁴ 42.647.
pp>ds-NP=1	Hq312	9205.5	9205.5	-	-			p p > u u- NP=1	u#11	4.4177×10 ⁴ 42.613	4.4169×10 ⁴ 42.649				
pp>ds-NP+1	qd1	-	-	9317.9	9317.8			p p > u u- NP=1	-	-	-	4.4165×10^{4}	4.4205×10 ⁴	4.4205 × 10 ⁴	4.4209×10 ⁴
p p > d s - NP = 1	qd11221	690 260. 9318.7	690 240. 9319.7					p p > u u- NP+1	uu1122	$4,4176\times10^4$	4.4169×10^{6}	-	-	-	-
pp>h>aa	SMlimit	0.021333 0.00017535	0.019985 0.00016427	0.0017537	0.019955 0.00016425	0.021334 0.00017536	0.019953 0.00016426	p p > u u- NP+1	. W	42.604.	42649.	4.4176×10^{6}	4.4169×10^4	$4,4174 \times 10^{6}$	$4,4168 \times 10^{4}$
$p\ p\ >\ h\ >\ a\ a\ NP=1$	HB	5.5024 0.045231	5.6217 0.046262	5.4973 0.045159	5.6208	5.4957 0.045184	5.6214 0.04621	0 0 x 0 0 NP-1	10(1)	4.3896×10^{4}	4.3896×10^{4}	42 604.	42 648.	42.604.	42 647.
$p\ p\ >\ h\ >\ a\ a\ NP=1$	HBtil	5.8096	5.9249 0.045704	5.8103 0.047763	5.9259 0.048712				SW1ted+	51992. 0.63923	51992. 0.65676	0.63923	0.65676	0.63923	0.65676
$p\ p\ >\ h\ >\ a\ a\ NP=1$	HG	0.50551 0.0051955	0.47054 0.0057604	0.50651 0.0061966	0.47084 0.0057604	0.50551 0.0051955	0.47054	0.0 x w h NP-1	Del tautio	0.0032239	0.0033139	0.0032239	0.0033139	0.0032239 0.63923	0.0033139 0.65676
$p \ p \ > \ h \ > \ a \ a \ NP = 1$	HGtil	0.49551 0.0051626	0.46342 0.0057291	0.49851 0.0061626	0.46342 0.0057291			pp > w+ h NP+1	Hbox	0.71908	0.7388	0.71908	0.7388	0.0032239	0.0033139
pp>h>aaNP=1	HWB					2.8092	2.9275	n n v we h NP-1	HD.	0.56586	0.637	0.56586	0.637	0.56744	0.637
pp>h>bb-	SMlimit	12.619	12.723	12.62	12,724	12.619	12.722	pp > w+ h NP+1	Hall	0.00285	0.0032142	0.00285	0.0032142 3.8038	0.0028579 0.63923	0.0032142 0.65676
p p > h > b b- NP=1	DeltadH	-	-	-	-	12.619	12.723	p p > w+ h NP+1	Нq311	2-5191	2-5992.	0.01519	0.035528	0.0032239	-
pp > h > b b- NP+1	dH			12.295	12.409	12.955	13.091	p p > w+ h NP+1	164	1.4421	1.4762	1.4421	1.4762	1.4421	1.4762
p p > h > b b- NP+1	dH33	15.557	12.723	0.0/5184	0.0/5862	0.079401	0.030028	pp>w+hNP=1	HND	0.5185	0.65676	0.5185	0.65676	0.52414	0.65676
	Maar	0.054059	0.052406	12.843	12.949	12.842	12.945	p p > w+ h NP=1	HWEIL	0.79358	0.81285	0.79258	0.01205		
pp:h:bbhnn1	HEGA .	0.083465	0.084162 299.97	0.083474 299.8	0.054164 299.97	0.083467 299.8	0.084157 299.97	pp>w+hNP=1	11	-	-	0.69524	0.69718	0.69534	0.69718
pp > 11 > 0 0- 10-12		1.2632	1.2639	1.2632	1.2639	1.2632	1.2639	p p > w+ h NP=1	111221	8-7318700	8-7299,770			-	
pp>mu+mu-	SACINIC	5.628	5.7365	5.628	5.7365	4.7562	4.6158	p p > z > e+ e-	SWlimit	631.87	637.92	631.87	637.92	627.91	626.64
p p > mu+ mu- NP=1	ed	-	-	5.4678	5.214	4.2008	4.2015	p p > z > e+ e- NP=1	HD	607.81	645.36	607.81	645.26	602.35	643.87 3.4666
p p > mu+ mu- NP=1	ed2211	5.6558	5.7365	-	-	-		p p > z > e+ e- NP=1	He			570.36	580.92	568.3 3.0678	580.03
p p > mu+ mu- NP=1	eH			5.628	5.7365	4.7562	4.6158	p p > z > e+ e- NP=1	Hell	566.15	576.89				
p p > mu+ mu- NP=1	eW			552.29 5.628	843.29 5.7365	4,7562	842.4 4.6158	p p > z > e+ e- NP=1	нта			323687	923195	500131	519488
p p > mu+ mu- NP=1	eh/22	5.5611	843.29 5.7365					p p > z > e+ e- NP=1	H1311	655.41 3.4736	690.76 3.6299				
$p \ p \ > \ mu+ \ mu- \ NP=1$	ledq			854.23 5.4471	846.83 5.164	854.71 4.1909	546.95 4.1817	p p > z > e+ e- NP=1	HND	624.66 3.3011	2.6543	624.66 3.3011	3.6543	618.47 3.2963	665.22 3.5879

1. Internal validation: 2 independent versions (A, B)

•	,						
process	coefficient	general α	general Mw	U(3)^5 α	U(3)^5 Mw	MFV α	MFV Mw
$e+\ e-\ >\ W+\ W-$	SMlimit	2.6156 0.059793	2.6788 0.061373	2.6156 0.059793	2.6788 0.061373	2.6156 0.059793	2.6788 0.061373
e+~e-~>~w+~w-~NP=1	Hl3	-	-	4.3384 0.10296	4.4249 0.094337	4.3384 0.10296	4.4249 0.094337
e+~e-~>~w+~w-~NP=1	Hl311	4.6686 0.098776	4.7797 0.10282	-	-	-	-
e+~e-~>~w+~w-~NP=1	W	4.9648 0.10804	5.06 0.11063	4.9648 0.10804	5.06 0.11063	4.9648 0.10804	5.06 0.11063
$e+\ e-\ >\ w+\ w-\ NP=1$	Wtil	4.9895 0.10855	5.0848 0.1111	4.9895 0.10855	5.0848 0.1111	-	-
$e_{+} e_{-} > z h$	SMlimit	0.013009 0.000032914	0.01302 0.000033124	0.013009 0.000032914	0.01302 0.000033124	0.013009 0.000032914	0.01302 0.000033124
$e+\ e-\ >\ z\ h\ NP=1$	eW	-	-	0.013009 0.000032914	0.01302 0.000033124	0.013009 0.000032914	0.01302 0.000033124
$e+\ e-\ >\ z\ h\ NP=1$	eW11	1.9983 0.0050475	0.01302 0.000033124	-	-	-	-
$e+\ e-\ >\ z\ h\ NP=1$	He	-	-	1.1756 0.0031	1.1838 0.0031194	1.1756 0.0031	1.1838 0.0031194
$e+\ e-\ >\ z\ h\ NP=1$	He11	1.1756 0.0031	1.1838 0.0031194	-	-	-	-
$e+\ e-\ >\ z\ h\ NP=1$	HWB	0.040274 0.00009404	0.036476 0.000084148	0.040274 0.00009404	0.036476 0.000084148	0.040274 0.00009404	0.036476 0.000084148
$p p > d s \sim$	SMlimit	688390. 11858.	688390. 11858.	688390. 11858.	688390. 11858.	688390. 11858.	688390. 11858.
$p \hspace{0.1cm} p \hspace{0.1cm} > \hspace{0.1cm} d \hspace{0.1cm} s \sim \hspace{0.1cm} NP {=} 1$	Delta2qd1	-	-	-	-	690240. 9319.7	690240. 9319.7
$p \hspace{0.1cm} p \hspace{0.1cm} > \hspace{0.1cm} d \hspace{0.1cm} s \sim \hspace{0.1cm} NP {=} 1$	DeltadHq3	-	-	-	-	703760. 9607.7	703760. 9607.7
$p \hspace{0.1cm} p \hspace{0.1cm} > \hspace{0.1cm} d \hspace{0.1cm} s \sim \hspace{0.1cm} NP {=} 1$	DeltadW	-	-	-	-	690240. 9319.7	690240. 9319.7
$p \hspace{0.1cm} p \hspace{0.1cm} > \hspace{0.1cm} d \hspace{0.1cm} s \sim \hspace{0.1cm} NP {=} 1$	dW	-	-	690240. 9319.7	690240. 9319.7	-	-
$p \hspace{0.1cm} p \hspace{0.1cm} > \hspace{0.1cm} d \hspace{0.1cm} s \sim \hspace{0.1cm} NP {=} 1$	dW12	692740. 9950.4	690240. 9319.7	-	-	-	-
$p \hspace{0.1cm} p \hspace{0.1cm} > \hspace{0.1cm} d \hspace{0.1cm} s \sim \hspace{0.1cm} NP \hspace{1cm}= \hspace{1cm} 1$	Hq312	706050. 9205.5	706050. 9205.5	xsec [pb]	MG5 r	esults with	set A
				err			

σ (SM+int+quadratic) for $C_i = 1$, $\Lambda = 1$ TeV

1. Internal validation: 2 independent versions (A, B)

•	,						
process	coefficient	general α	general Mw	U(3)^5 α	U(3)^5 Mw	MFV α	MFV Mw
$e+\ e-\ >\ w+\ w-$	SMlimit	2.6156 0.059793	2.6788 0.061373	2.6156 0.059793	2.6788 0.061373	2.6156 0.059793	2.6788 0.061373
e+ e- > w+ w- NP=1	Hl3	-	-	4.3384 0.10296	4.4249 0.094337	4.3384 0.10296	4.4249 0.094337
e+ e- > w+ w- NP=1	Hl311	4.6686 0.098776	4.7797 0.10282	-	-	-	-
e + e - > w + w - NP = 1	W	4.9648 0.10804	5.06 0.11063	4.9648 0.10804	5.06 0.11063	4.9648 0.10804	5.06 0.11063
e + e - > w + w - NP = 1	Wtil	4.9895 0.10855	5.0848 0.1111	4.9895 0.10855	5.0848 0.1111	-	-
$e_+ e > z h$	SMlimit	0.013009 0.000032914	0.01302 0.000033124	0.013009 0.000032914	0.01302 0.000033124	0.013009 0.000032914	0.01302 0.000033124
$e+\ e-\ >\ z\ h\ NP=1$	eW	-	-	0.013009 0.000032914	0.01302 0.000033124	0.013009 0.000032914	0.01302 0.000033124
$e+\ e-\ >\ z\ h\ NP=1$	eW11	1.9983 0.0050475	0.01302 0.000033124	-	-	-	-
$e+\ e-\ >\ z\ h\ NP=1$	He	-	-	1.1756 0.0031	1.1838 0.0031194	1.1756 0.0031	1.1838 0.0031194
$e+\ e-\ >\ z\ h\ NP=1$	Hell	1.1756 0.0031	1.1838 0.0031194	-	-	-	-
$e+\ e-\ >\ z\ h\ NP=1$	HWB	0.040274 0.00009404	0.036476 0.000084148	0.040274 0.00009404	0.036476 0.000084148	0.040274 0.00009404	0.036476 0.000084148
pp>ds~	SMlimit	688390. 11858.	688390. 11858.	688390. 11858.	688390. 11858.	688390. 11858.	688390. 11858.
$p \hspace{0.1cm} p \hspace{0.1cm} > \hspace{0.1cm} d \hspace{0.1cm} s \sim \hspace{0.1cm} NP {=} 1$	Delta2qd1	-	-	-	-	690240. 9319.7	690240. 9319.7
$p \hspace{0.1cm} p \hspace{0.1cm} > \hspace{0.1cm} d \hspace{0.1cm} s \sim \hspace{0.1cm} NP {=} 1$	DeltadHq3	-	-	-	-	703760. 9607.7	703760. 9607.7
$p \hspace{0.1cm} p \hspace{0.1cm} > \hspace{0.1cm} d \hspace{0.1cm} s \sim \hspace{0.1cm} NP = 1$	DeltadW	-	-	-	-	690240. 9319.7	690240. 9319.7
$p \hspace{0.1cm} p \hspace{0.1cm} > \hspace{0.1cm} d \hspace{0.1cm} s \sim \hspace{0.1cm} NP {=} 1$	dW	-	-	690240. 9319.7	690240. 9319.7	-	-
F 10 (C	".12	692740. 9950.4	690240. 9319.7	-	-	-	-
5-10 coeff.	× 312	706050. 9205.5	706050. 9205.5	xsec [pb]	MC5	oculte with	sot A
~ 20 proces	ses			err	10001	CSUILS WILL	Set A

σ (SM+int+quadratic) for $C_i = 1$, $\Lambda = 1$ TeV

1. Internal validation: 2 independent versions 3 flavor assum. × 2 schemes

$\sigma(SM+int+quad)$	dratic) for ($C_i = 1, \Lambda =$	1 TeV		V	\sim	
process	coefficient	general α	general Mw	U(3)^5 α	U(3)^5 Mw	MFV α	MFV Mw
$e+\ e-\ >\ w+\ w-$	SMlimit	2.6156 0.059793	2.6788 0.061373	2.6156 0.059793	2.6788 0.061373	2.6156 0.059793	2.6788 0.061373
$e+\ e-\ >\ w+\ w-\ NP=1$	Hl3	-	-	4.3384 0.10296	4.4249 0.094337	4.3384 0.10296	4.4249 0.094337
$e+\ e-\ >\ w+\ w-\ NP=1$	Hl311	4.6686 0.098776	4.7797 0.10282	-	-	-	-
$e+\ e-\ >\ w+\ w-\ NP=1$	W	4.9648 0.10804	5.06 0.11063	4.9648 0.10804	5.06 0.11063	4.9648 0.10804	5.06 0.11063
$e+\ e-\ >\ w+\ w-\ NP=1$	Wtil	4.9895 0.10855	5.0848 0.1111	4.9895 0.10855	5.0848 0.1111	-	-
$e_{+} e_{-} > z h$	SMlimit	0.013009 0.000032914	0.01302 0.000033124	0.013009 0.000032914	0.01302 0.000033124	0.013009 0.000032914	0.01302 0.000033124
e+~e-~>~z~h~NP=1	eW	-	-	0.013009 0.000032914	0.01302 0.000033124	0.013009 0.000032914	0.01302 0.000033124
e+~e-~>~z~h~NP=1	eW11	1.9983 0.0050475	0.01302 0.000033124	-	-	-	-
$e+\ e-\ >\ z\ h\ NP=1$	He	-	-	1.1756 0.0031	1.1838 0.0031194	1.1756 0.0031	1.1838 0.0031194
$e+\ e-\ >\ z\ h\ NP=1$	Hell	1.1756 0.0031	1.1838 0.0031194	-	-	-	-
$e+\ e-\ >\ z\ h\ NP=1$	HWB	0.040274 0.00009404	0.036476 0.000084148	0.040274 0.00009404	0.036476 0.000084148	0.040274 0.00009404	0.036476 0.000084148
$p p > d s \sim$	SMlimit	688390. 11858.	688390. 11858.	688390. 11858.	688390. 11858.	688390. 11858.	688390. 11858.
$p \hspace{0.1cm} p \hspace{0.1cm} > \hspace{0.1cm} d \hspace{0.1cm} s \sim \hspace{0.1cm} NP=1$	Delta2qd1	-	-	-	-	690240. 9319.7	690240. 9319.7
$p \hspace{0.1cm} p \hspace{0.1cm} > \hspace{0.1cm} d \hspace{0.1cm} s \sim \hspace{0.1cm} NP=1$	DeltadHq3	-	-	-	-	703760. 9607.7	703760. 9607.7
$p \hspace{0.1cm} p \hspace{0.1cm} > \hspace{0.1cm} d \hspace{0.1cm} s \sim \hspace{0.1cm} NP=1$	DeltadW	-	-	-	-	690240. 9319.7	690240. 9319.7
$p \hspace{0.1cm} p \hspace{0.1cm} > \hspace{0.1cm} d \hspace{0.1cm} s \sim \hspace{0.1cm} NP {=} 1$	dW	-	-	690240. 9319.7	690240. 9319.7	-	-
E 10 cooff	".12	692740. 9950.4	690240. 9319.7	-	-	-	-
5-10 COEff.	× 312	706050. 9205.5	706050. 9205.5	xsec [pb]	MG5 r	esults with	set A
~ 20 proces	ises			err	10001		1 300 71

1. Internal validation: 2 independent versions (A, B)

2. Validation against dim6top

feynrules.irmp.ucl.ac.be/wiki/dim6top – G.Durieux,C.Zhang Top WG note: Aguilar-Saavedra et al. 1802.07237

			$pp \rightarrow t\bar{t}$	$pp \rightarrow t\bar{t}b\bar{b}$	$pp \rightarrow t\bar{t} t\bar{t}$	$\rho p \rightarrow t \bar{t} e^+ \nu$	$\rho p \rightarrow t \bar{t} e^+ e^-$	$\rho \rho \rightarrow t \bar{t} \gamma$	$\rho p \rightarrow t \bar{t} h$	$\rho p \rightarrow t j$	$\rho p \rightarrow t \ e^- \rho$	$pp \rightarrow tj e^+e^-$	$\rho p \rightarrow t j \gamma$	$pp \rightarrow tjh$
Φ	SM	25	5.2 × 10" pb	1.9 pb	0.0098 pb	0.02 pb	0.016 pb	1.4 pb	0.4 pb	55 pb	2.5 pb	0.0054 pb	0.39 pb	0.016 pb
=	°ĝq	cQQ1	-0.25	-1.9	-1×10^{4}		-1.6	-0.67	-0.71					
·=	- çç q	cQQS	-0.16	-3.2	-34		-0.91	-0.5	-0.27					
F	¢g:	cQt1	-0.15	-5.6	1×10^{4}		-0.76	-0.19	-0.55					
÷-	eg:	cQt8	-0.053	-1.8	-41		-0.18	-0.095	-0.15					
2	°ĝs	cQb1	-0.0055	0.72	-0.052		-0.015	-0.007	-0.026					
Ψ	- Qu	cQb8	0.14	3.9	0.12		0.35	0.16	0.56					
<u>0</u>	¢.	cttl			-1.8×10^{4}									
_	- go	ctbl	-0.0095	0.46	-0.059		-0.02	-0.026	-0.039					
~	÷.	ctos	0.15	3.5	0.11		0.26	0.51	0.50					
~	-Grdv	cutuoi												
d)	~gras	cutuos												
<u> </u>	~Q1Q6	cutuoli												
	- 0:00	cutupas												
	694	cQq83	2.7	-0.11	4.7	-85	-20	8.5	15	-3.4×10^{-10}		-0.4 × 10 ⁻¹⁰	-5.2×10^{-10}	-4.1 × 10 ⁻¹⁰
-	CQ4	cQq81	12	7.1	25	2.6×10^{2}	71	40	75					
	cla	ctq8	13	8.2	27	2.6×10^{2}	62	51	74					
	-å.	cQuB	7.4	4.4	18		21	41	44					
	4	ctuB	7.4	3	16		14	22	45					
~	ega	cQd8	5	3	11		17	7.3	29					
<u> </u>	c.,	ctdB	5	2.1	10		12	10	28					
	C04	cQq13	3.3	3	5.8	1.1×10^{2}	22	11	18	-3.8×10^{2}		-7.9×10^{2}	-6.1×10^{2}	-4.6×10^{2}
_	c0.1	cQq11	0.94	-1.4	-7.7	-5.9	-5	3	5.4					
	clu a	ctq1	0.65	2.4	-7.9	8.7	0.84	3.7	4.8					
11	-1 -0-	cQu1	0.57	1.5	-5.2		1.5	2.9	4.3					
	en.	ctul	1.1	-0.29	-3.8		2.3	3.3	6.6					
	con .	cQd1	-0.19	0.55	-4		-0.66	-0.3	-1.4					
(5	ch	ctd1	-0.37	-1.3	-5		-0.91	-1.3	-2.1					
$\mathbf{\circ}$	944	ctp		-0.00035	-9.1	-0.034	-0.0093		-1.2×10^{2}					-68
	- a	cpQK	-0.063	1	-41	-0.76	-1×10^{2}	-0.13	-0.29			21		
2	-52	cpQ3	0.68	22	0.065	0.46	3.7	1.5	1.8	1.2×10^{2}	1.2×10^{2}	2.2×10^{2}	1.2×10^{2}	1.3×10^{2}
.0	Cµ c	cpt	-0.024	2.8	42	-0.36	68	-0.058	-0.16			5.2		
4	Cµ cb	cptb												
\sim	Sew.	ctW ct7	0.98	0.028	-34	13	-3.6	-55	9.4	84	-7b	45	50	9.1×10^{-1}
<u> </u>	C _{NW}	cbW	-0.54	0.020		-0.040	-3.0	-33	-4.3			-10	-0	
>	50G	ctG	2.7×10^{2}	2.5×10^{2}	3.8×10^{2}	2.4×10^{2}	3.1×10^{2}	2.4×10^{2}	8.4×10^{2}		59			
-	cl.	ctpI		-7.3×10^{-7}	0.045	-0.00064	-0.00029		0.045					-0.21
0)	Sum	cptbI												
\sim	L.w	ctWI	4.8×10^{-6}	0.032	-1.6	-0.19	0.29	0.91	0.031	1.6×10^{-16}	-1.4	0.47	0.022	-0.13
6	e.7	ctZI	-1.4×10^{-6}	0.1	-1.2	0.0098	3.2	-0.56	-0.057			-0.87	0.67	
~	COW	cbWI												
\sim	enc.	ctGI	-0.00098	0.48	0.66	0.031	-0.7	0.019	-2.4		0.4			
	c0/	cQ131				0.011	0.06				4.1	6		
+	co(1)	cQ1H1				-0.0062	-9.8					2.2		
_	c(1)	cDe1					-1.5					-0.39		
	200 _(1)					0.0002	2.6					-0.036		
\sim	10					-0.0023	-3.0					0.064		
0	Cre.	ctel					-6.7					0.004		

- 1. Internal validation: 2 independent versions (A, B)
- 2. Validation against dim6top

feynrules.irmp.ucl.ac.be/wiki/dim6top – G.Durieux,C.Zhang Top WG note: Aguilar-Saavedra et al. 1802.07237

			$pp \rightarrow t\bar{t}$	$pp \rightarrow t\bar{t}b\bar{b}$	$pp \rightarrow t\bar{t} t\bar{t}$	$\rho p \rightarrow t \bar{t} e^+ \nu$	$\rho p \rightarrow t \bar{t} e^+ e^-$	$\rho \rho \rightarrow t \bar{t} \gamma$	$\rho p \rightarrow t \bar{t} h$	$pp \rightarrow tj$	$pp \rightarrow t e^- p$	$pp \rightarrow tj e^+ e^-$	$\rho p \rightarrow t j \gamma$	$pp \rightarrow tj h$	
<u>_</u>	SM	25	5.2 × 10° pb	1.9 pb	0.0098 pb	0.02 pb	0.016 pb	1.4 pb	0.4 pb	55 pb	2.5 pb	0.0054 pb	0.39 pb	0.016 pb	
=	999	<qq1< th=""><th>-0.25</th><th>-1.9</th><th>-1 × 10⁻</th><th></th><th>-1.0</th><th>-0.67</th><th>-0.71</th><th></th><th></th><th></th><th></th><th></th><th></th></qq1<>	-0.25	-1.9	-1 × 10 ⁻		-1.0	-0.67	-0.71						
	-99	c0+1	-0.15	-5.6	1×10^{2}		-0	-0.19	-0.55						
<u> </u>	2	c0+8	-0.053	-1.8	-41		-0.18	-0.095	-0.15					10 +on	pro coccoc
~	el.	cDb1	-0.0055	0.72	-0.052		-0.015	-0.007	-0.026					12 lop	processes
U U	3	cQb8	0.14	3.9	0.12		0.35	16	0.56						
<u>0</u>	c_1^T	cttl			-1.8×10^{2}										
_	c'p	ctbl	-0.0095	0.46	-0.059		-0.02	-0.02	-0.039						
~	÷	ctb8	0.13	3.5	0.11		0.26	0.31	0.56						
~	-grav	CUEUDI -OrChill													
. e	9706	c0+0b1T													
–	-03Q8	cDtObBI													
	- 0308	(0:13	2.7	-0.11	4.7	-85	-20	8.5	15	4×10^{-15}		-6.4×10^{-15}	-5.2×10^{-15}	-4.1×10^{-15}	
H	23	cDall1	-												
	294	ctq8		n , +Ŧ			E h h		++++		↓ +∓	+		+++++++++++++++++++++++++++++++++++++++	nn \ +Ŧ.e.
	÷,	cQuB	PI	$p \rightarrow ll$	P	$p \rightarrow u$		$pp \rightarrow$		PP	- 110	ν	$pp \rightarrow$	lle e	$pp \rightarrow t t \gamma$
	-1°	ctul		+ T I	6		+:		+		· +i o ⁻	+		. +i a	nn tih
<	egu	cQdB	PP	$\rightarrow u u$	'	$pp \rightarrow$	IJ	$pp \rightarrow$	Lev	pp ·	$\rightarrow ije$	е	PP	$\rightarrow ij \gamma$	$pp \rightarrow ij n$
-	5.1	ctd8													
	29	-0-11	0.04		3.0	5.0									
-	-04	ctal	0.65	2.4	-7.9	8.7	0.84	3.7	4.8						
	1	cBal	0.57	1.5	-5.2		1.5	2.9	4.3						
	2	ctul	1.1	-0.29	-3.8		2.3	3.3	6.6						
	- Ga	cQd1	-0.19	0.55	-4		-0.66	-0.3	-1.4						
()	cíd	ctdl	-0.37	-1.3	-5		-0.91	-1.3	-2.1						
\sim	ς	ctp		-0.00035	-9.1	-0.034	-0.0093		-1.2×10^{2}					-68	
~	649	срФК	-0.063	1	41	-0.76	-1 × 10°	-0.13	-0.29			21			
0	54 Q	cpQ3	0.68	22	0.065	0.46	3.7	1.5	1.8	1.2×10^{4}	1.2×10^{4}	2.2 × 10*	1.2×10^{4}	1.3×10^{4}	
Ψ	Euro.	cptb	-0.024	2.0		-0.30		-0.030	-0.10			3.4			
-	COW.	ctW	0.98	1	-34	13	1.1	69	9.4	84	-76	45	50	9.1×10^{2}	
\sim	c _{tZ}	ctZ	-0.54	0.028	27	-0.048	-3.0	-55	-4.3			-10	-6		
>	enc.	ctG	2.7×10^{2}	2.5×10^{2}	3.8×10^{2}	2.4×10^{2}	3.1×10^{2}	2.4×10^{2}	8.4×10^{2}		59				
5	el.	ctpI		-7.3×10^{-7}	0.045	-0.00064	-0.00029		0.045					-0.21	
0)	- 1°	cptbI													
\sim	ciw	ctWI	4.8×10^{-6}	0.032	-1.6	-0.19	0.29	0.91	0.031	1.6×10^{-16}	-1.4	0.47	0.022	-0.13	
0	°µ	ctZI	-1.4×10^{-6}	0.1	-1.2	0.0098	3.2	-0.56	-0.057			-0.87	0.67		
>	cyw	cbWI	0.00008	0.49	0.66	0.021	0.7	0.010	2.4		0.4				
	- 3(1)	-0131	-0.00046	v.40	v.00	0.031	-0.7	0.019	-2.5		4.1	6			
نب	-Q/ -(1)	-0191				0.0060	0.9					2.2			
Ë	-Q/ -(1)	-Del				-0.0062	-9.8					-0.39			
.=.	6	- qui					-1.5					0.036			
~	- (i) (i)	ctil				-0.0023	-3.6					-0.036			
0	Cre	ctel					-0.7					2.004			

1. Internal validation: 2 independent versions (A, B)

2. Validation against dim6top

feynrules.irmp.ucl.ac.be/wiki/dim6top – G.Durieux,C.Zhang Top WG note: Aguilar-Saavedra et al. 1802.07237

1. Internal validation: 2 independent versions (A, B)

2. Validation against dim6top

feynrules.irmp.ucl.ac.be/wiki/dim6top - G.Durieux,C.Zhang

Top WG note: Aguilar-Saavedra et al. 1802.07237

			$pp \rightarrow t\bar{t}$	$pp \rightarrow t\bar{t}b\bar{b}$	$pp \rightarrow t\bar{t} t\bar{t}$	$pp \rightarrow t\bar{t} e^+ \nu$	$\rho p \rightarrow t\bar{t} e^+ e^-$	$\rho \rho \rightarrow t \bar{t} \gamma$	$pp \rightarrow t\bar{t}h$	$pp \rightarrow tj$	$pp \rightarrow t e^{-}D$	$pp \rightarrow tj e^+$	e [−] pp → tj •	$pp \rightarrow tjh$	
e a	SM	20	$5.2 \times 10^{2} \text{ pb}$	1.9 pb	0.0098 pb	0.02 pb	0.016 pb	1.4 pb	0.4 pb	55 pb	2.5 pb	0.0054 pb	0.39 pb	0.016 pb	
-	c00	cQQ1	-0.25	-1.9	-1×10^{2}		-1.6	-0.67	-0.71						
	-00	cQQS	-0.16	-3.2	-34		-0.91	-0.5	-0.27						
_	eo,	cQt1	-0.15	-5.6	1×10^{2}		-0.76	-0.19	-0.55						
<u> </u>	- C.	cQt8	-0.053	-1.8	-41		-0.18	-0.095	-0.15					10 ± 01	nrocossos
~	1	cDb1	-0.0055	0.72	-0.052		-0.015	-0.007	-0.026					12 lOh	piucesses
e	2	cDb8	0.14	3.9	0.12		0.35	0.16	0.56						•
0	-10				1.9 - 102										
	2	othi	-0.0095	0.46	-0.059		-0.02	-0.026	-0.0%						
	2	ctb8	0.13	3.5	0.11		0.26	0.31	0.56						
~	en or	cQtQb1													
-	4.44	<0+0h8													
. O	- 4900	c0+0b11												~ 50.0	coefficients
-	28/	<0+0N81													
	- 0:06		0.7	0.11				0.5		2.4 - 10-13		6.4 ~ 10-	B 5.3 × 10	D 41 - 10 - D	
	- 6 98	cuqua	2.1	-0.11	4.7	-89	- 20	0.5	15	-3.4 × 10		-0.4 × 10	-3.2 × 10	-4.1 × 10	
-	°94	cQq81	12	7.1	25	2.6 × 10"	71	40	75						
	c _{ng}	ctq8	13	8.2	27	2.6×10^{4}	62	51	74					·	
	÷0.	cQuB	7.4	4.4	18		21	41	44				hoth	Interter	rence and
	- ²	ctuB	7.4	3	16		14	22	45				DOLII	muchici	chec and
-	c _{Q4}	cQd8	5	3	11		17	7.3	29						
~	c _{td}	ctdB	5	2.1	10		12	10	28						A
-	CQ4	cQq13	3.3	3	5.8	1.1×10^{2}	22	11	18	-3.8×10^{2}			au	adratic	terms
-	c ^{1,1}	cQq11	0.94	-1.4	-7.7	-5.9	-5	3	5.4				9~		
	cl.	ctql	0.65	2.4	-7.9	8.7	0.84	3.7	4.8						
11	ã.	cDu1	0.57	1.5	-5.2		1.5	2.9	4.3						
	2	ctul	1.1	-0.29	-3.8		2.3	3.3	6.6					1	
	en.	cQd1	-0.19	0.55	-4		-0.66	-0.3	-1.4						
(5	cl.	ctd1	-0.37	-1.3	-5		-0.91	-1.3	-2.1				10		and the second
\cup	954	ctp		-0.00035	-9.1	-0.034	-0.0093		-1.2×10^{2}			_	- 12	00+ni	impers
	e	cpQK	-0.063	1	-41	-0.76	-1×10^{2}	-0.13	-0.29					00 1 110	
-	20	cpQ3	0.68	22	0.065	0.46	3.7	1.5	1.8	1.2×10^2	1.2×10^{2}	2			
0	Gur	cpt	-0.024	2.8	42	-0.36	68	-0.058	-0.16					compa	rod
4	Suith	cptb												COmpa	neu
	CeW .	ctW	0.98	1	-34	13	1.1	69	9.4	84	-76				
	c _{rZ}	ctZ	-0.54	0.028	27	-0.048	-3.6	-55	-4.3						
<	~5W		a a ee2	0.5	a a 112	a a and	a a and	A 4 442	a a and		50				
~	-1	ceu	2.7 × 10	2.5 × 10 7.2 - 10-7	3.6 × 10	2.4 × 10	3.1 × 10	2.4 × 10	0.4 × 10		34			-0.21	
S	14	cope		-1.3 × 10	0.040	-0.00004	-0.00029		0.040						
<u> </u>	-ya	CDEDI													
h	€ _W	CENI	4.0 × 10	0.032	-1.0	-0.19	0.29	0.91	0.031	1.6×10^{-11}	-1.4	0.47	0.022	-0.13	
.0	7		-1.4 × 10	0.1		0.0040	3.4	-0.20	-0.007			-0.07	0.07		
<u> </u>	-yw		0.00009	0.49	0.66	0.021	0.7	0.010	2.4		0.4				
	3(1)	-0131			2.00	0.011	0.06	0.349	2.4		4.1	6			
	-(1)	-4+31				0.011	0.00								
F	591 (1)	cų181				-0.0062	-9.8					2.2			
.=	CQ.	cQe1					-1.5					-0.39			
	c(1)	ct11				-0.0023	-3.6					-0.036			
b	c _{re} ⁽¹⁾	ctel					-6.7					0.064			

- 1. Internal validation: 2 independent versions (A, B)
- 2. Validation against dim6top

feynrules.irmp.ucl.ac.be/wiki/dim6top – G.Durieux,C.Zhang Top WG note: Aguilar-Saavedra et al. 1802.07237

3. Validation against VBFNLO

Arnold et al. 0811.4559,1107.4038, Baglio et al 1404.3940 VBSCan Thessaloniki Workshop summary. To appear.

VBFNLO has hard coded matrix elements for selected EW processes uses HISZ basis \rightarrow could validate $O_{WWW} = \varepsilon_{ijk} W^{i\mu}_{\nu} W^{j\nu}_{\rho} W^{k\rho}_{\mu}$

checked: $pp \rightarrow e^+ \nu_e \mu^+ \mu^-$ and $pp \rightarrow e^+ \nu_e \mu^+ \nu_\mu jj$

LO, compared σ_{SM} + distributions

- 1. Internal validation: 2 independent versions (A, B)
- 2. Validation against dim6top

feynrules.irmp.ucl.ac.be/wiki/dim6top – G.Durieux,C.Zhang Top WG note: Aguilar-Saavedra et al. 1802.07237

3. Validation against VBFNLO

Arnold et al. 0811.4559,1107.4038, Baglio et al 1404.3940 VBSCan Thessaloniki Workshop summary. To appear.

Ilaria Brivio (NBI, Copenhagen)

EFT tools & validation – SMEFT LO

- 1. Internal validation: 2 independent versions (A, B)
- 2. Validation against dim6top
- 3. Validation against VBFNLO
- 4. Validation against analytic expressions

feynrules.irmp.ucl.ac.be/wiki/dim6top – G.Durieux,C.Zhang Top WG note: Aguilar-Saavedra et al. 1802.07237

Arnold et al. 0811.4559,1107.4038, Baglio et al 1404.3940 VBSCan Thessaloniki Workshop summary. To appear.

Brivio, Trott SMEFT review 1706.08945

	theory	MG interf.	MG full xs
cHW	-0.757133	-0.77948	-0.778724
сНВ	-0.217121	-0.223247	-0.223151
cHWB	0.308271	0.295226	0.317418
cHbox	2.	1.99882	2.00469
cHD	0.167224	0.164264	0.170457
сНе	-3.5239	-1.72758	-1.72691
cHl1	4.38291	2.15039	2.14801
cHl3	-1.61513	-3.85776	-3.86201
cll1	2.99835	2.99884	3.00731

 $\sigma(\text{int.})/\sigma(\text{SM})$ for $\bar{C}_i = C_i (v/\Lambda)^2 = 1$

- 1. Internal validation: 2 independent versions (A, B)
- 2. Validation against dim6top
- 3. Validation against VBFNLO
- 4. Validation against analytic expressions

feynrules.irmp.ucl.ac.be/wiki/dim6top – G.Durieux,C.Zhang Top WG note: Aguilar-Saavedra et al. 1802.07237

Arnold et al. 0811.4559,1107.4038, Baglio et al 1404.3940 VBSCan Thessaloniki Workshop summary. To appear.

Brivio, Trott SMEFT review 1706.08945

- 1. Internal validation: 2 independent versions (A, B)
- 2. Validation against dim6top
- **3.** Validation against VBFNLO

feynrules.irmp.ucl.ac.be/wiki/dim6top – G.Durieux,C.Zhang Top WG note: Aguilar-Saavedra et al. 1802.07237

Arnold et al. 0811.4559,1107.4038, Baglio et al 1404.3940 VBSCan Thessaloniki Workshop summary. To appear.

4. Validation against analytic expressions

Brivio, Trott SMEFT review 1706.08945

		MG5: h	> e+ e- mu	+ mu- / a	full xsec,
	- / ^e		pure int	t.	linearized
	$H \xrightarrow{2} e^{-}$		theory	MG interf.	MG full xs
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	cHW	-0.757133	-0.77948	-0.778724
le	الاسم+	cHB	-0.217121	-0.223247	-0.223151
d	$z = \mu^{\mu}$	cHWB	0.308271	0.295226	0.317418
	-	cHb⊙x	2.	1.99882	2.00469
X	$\sim \mu^{-}$	CirlD	0.167224	0.164264	0.170457
ш		сНе	-3.5239	-1.72758	-1.72691
		cHl1	4.38291	2.15039	2.14801
	dominant diag contribution	cHl3	-1.61513	-3.85776	-3.86201
	known analytically	cll1	2.99835	2.99884	3.00731
	Known analytically		( , , )		C ( (A)2 1
			$\sigma(\text{int.})$	$\sigma(SNI)$ for $C_i$	$= C_i (v/\Lambda)^2 = 1$

- 1. Internal validation: 2 independent versions (A, B)
- 2. Validation against dim6top
- 3. Validation against VBFNLO
- 4. Validation against analytic expressions

feynrules.irmp.ucl.ac.be/wiki/dim6top – G.Durieux,C.Zhang Top WG note: Aguilar-Saavedra et al. 1802.07237

Arnold et al. 0811.4559,1107.4038, Baglio et al 1404.3940 VBSCan Thessaloniki Workshop summary. To appear.

Brivio, Trott SMEFT review 1706.08945



	theory	MG interf.	MG full xs
cHW	-0.757133	-0.77948	-0.778724
сНВ	-0.217121	-0.223247	-0.223151
cHWB	0.308271	0.295226	0.317418
cHbox	2.	1.99882	2.00469
cHD	0.167224	0.164264	0.170457
сНе	-3.5239	-1.72758	-1.72691
cHl1	4.38291	2.15039	2.14801
cHl3	-1.61513	-3.85776	-3.86201
cll1	2.99835	2.99884	3.00731

 $\sigma(\text{int.})/\sigma(\text{SM})$  for  $\bar{C}_i = C_i (\nu/\Lambda)^2 = 1$ 

- 1. Internal validation: 2 independent versions (A, B)
- 2. Validation against dim6top feynrules.irmp.ucl.ac.be/wiki/dim6top - G.Durieux, C.Zhang Top WG note: Aguilar-Saavedra et al. 1802.07237 3. Validation against VBFNLO Arnold et al. 0811.4559.1107.4038. Baglio et al 1404.3940 VBSCan Thessaloniki Workshop summary. To appear. **4.** Validation against analytic expressions Brivio, Trott SMEFT review 1706.08945 z > e+ ez > u u~ w+ > l+ vl w+ > uq dq~ h > a ah > z a h > b bh > ta+ tah > e+ e- mu+ mu- / a h > e+ ve mu- vmpp>zh/a gg>h
  - p p > w+h p p > w-h

. . .

- 1. Internal validation: 2 independent versions (A, B)
- 2. Validation against dim6top
- **3.** Validation against VBFNLO
- 4. Validation against analytic expressions
- 5. Further validation still ongoing!

feynrules.irmp.ucl.ac.be/wiki/dim6top – G.Durieux,C.Zhang Top WG note: Aguilar-Saavedra et al. 1802.07237

Arnold et al. 0811.4559,1107.4038, Baglio et al 1404.3940 VBSCan Thessaloniki Workshop summary. To appear.

Brivio, Trott SMEFT review 1706.08945

### **Key features**

Brivio, Hays, Trott, Žemaitytė, in preparation

- ▶ semianalytic LO corrections up to  $\mathcal{O}(\Lambda^{-2}) \rightarrow$  fully analytic  $\chi^2$  minimization
- # parameters controlled by
- IR symmetries
- observables (SM selection rules)

### **Key features**

Brivio, Hays, Trott, Žemaitytė, in preparation

- ▶ semianalytic LO corrections up to  $\mathcal{O}(\Lambda^{-2}) \rightarrow$  fully analytic  $\chi^2$  minimization
- # parameters controlled by
- IR symmetries
- observables (SM selection rules)

	total $N_f = 3$	WZH pole obs.
general	2499	$\sim 46$
MFV	$\sim 108$	$\sim 30$
$U(3)^{5}$	$\sim 70$	$\sim 24$

Brivio, Jiang, Trott 1709.06492

starting point: resonant-dominated processes with U(3)⁵

### **Key features**

Brivio, Hays, Trott, Žemaitytė, in preparation

- ▶ semianalytic LO corrections up to  $\mathcal{O}(\Lambda^{-2}) \rightarrow$  fully analytic  $\chi^2$  minimization
- # parameters controlled by
- IR symmetries
- observables (SM selection rules)
- combine different datasets.

so far: EWPD + Higgs + diboson (LEP)

make it extensible: + top + diboson/EW (LHC) + flavor + ...

```
combining is crucial!
```

- needed to break degeneracies
- large mixings from <u>RGE</u> between measurements at different energies (e.g. LHC vs flavor)

### **Key features**

Brivio, Hays, Trott, Žemaitytė, in preparation

- ▶ semianalytic LO corrections up to  $\mathcal{O}(\Lambda^{-2}) \rightarrow$  fully analytic  $\chi^2$  minimization
- # parameters controlled by
- IR symmetries
- observables (SM selection rules)
- combine different datasets.
   so far: EWPD + Higgs + diboson (LEP)
   make it extensibles + tag + diboson (EP) (LUC) + flavor
  - make it extensible: + top + diboson/EW (LHC) + flavor + ...
- method: builds upon Hays, Sanz, Zemaitytė LHCHXSWG-INT-2017-001 (Higgs) ATLAS note: ATL-PHYS-PUB-2017-018 Brivio, Trott 1701.06424 (EWPD) Berthier, (Bjørn), Trott 1508.05060, 1606.06693

See also e.g. Ellis,Murphy,Sanz,You 1803.03252 (with SMEFTsim) Almeida,Alves,Rosa-Agostinho,Éboli,Gonzalez-Garcia 1812.01009

### Z,W couplings

$$\begin{aligned} \mathcal{Q}_{HI}^{(1)} &= (iH^{\dagger}\overleftrightarrow{D}_{\mu}H)(\bar{l}\gamma^{\mu}l) \\ \mathcal{Q}_{He} &= (iH^{\dagger}\overleftrightarrow{D}_{\mu}H)(\bar{e}\gamma^{\mu}e) \\ \mathcal{Q}_{Hq}^{(1)} &= (iH^{\dagger}\overleftrightarrow{D}_{\mu}H)(\bar{q}\gamma^{\mu}q) \\ \mathcal{Q}_{Hq}^{(3)} &= (iH^{\dagger}\overleftrightarrow{D}_{\mu}^{i}H)(\bar{q}\sigma^{i}\gamma^{\mu}q) \\ \mathcal{Q}_{Hu} &= (iH^{\dagger}\overleftrightarrow{D}_{\mu}H)(\bar{u}\gamma^{\mu}u) \\ \mathcal{Q}_{Hd} &= (iH^{\dagger}\overleftrightarrow{D}_{\mu}H)(\bar{d}\gamma^{\mu}d) \end{aligned}$$

 $\begin{aligned} \mathcal{Q}_{HD} &= (D_{\mu}H^{\dagger}H)(H^{\dagger}D^{\mu}H) \\ \mathcal{Q}_{HWB} &= (H^{\dagger}\sigma^{i}H)W_{\mu\nu}^{i}B^{\mu\nu} \\ \mathcal{Q}_{HI}^{(3)} &= (iH^{\dagger}\overleftrightarrow{D}_{\mu}^{i}H)(\overline{l}\sigma^{i}\gamma^{\mu}l) \\ \mathcal{Q}_{II}^{\prime} &= (\overline{l}_{p}\gamma^{\mu}l_{r})(\overline{l}_{r}\gamma^{\mu}l_{p}) \end{aligned}$ 

input quantities

$$\mathcal{Q}_W = \varepsilon_{ijk} W^{i\nu}_{\mu} W^{j\rho}_{\nu} W^{k\mu}_{\rho}$$

### TGC

Ilaria Brivio (NBI, Copenhagen)

### Bhabha scattering

$$\begin{aligned} \mathcal{Q}_{ee} &= (\bar{e}\gamma^{\mu}e)(\bar{e}\gamma^{\mu}e)\\ \mathcal{Q}_{le} &= (\bar{l}\gamma^{\mu}l)(\bar{e}\gamma^{\mu}e)\\ \mathcal{Q}_{ll} &= (\bar{l}_{p}\gamma^{\mu}l_{p})(\bar{l}_{r}\gamma^{\mu}l_{r}) \end{aligned}$$

$$\begin{aligned} \mathcal{Q}_{Hbox} &= (H^{\dagger}H) \circ (H^{\dagger}H) \\ \mathcal{Q}_{HG} &= (H^{\dagger}H) G^{a}_{\mu\nu} G^{a\mu\nu} \\ \mathcal{Q}_{HB} &= (H^{\dagger}H) B_{\mu\nu} B^{\mu\nu} \\ \mathcal{Q}_{HW} &= (H^{\dagger}H) W^{i}_{\mu\nu} W^{i\mu\nu} \\ \mathcal{Q}_{uH} &= (H^{\dagger}H) (\bar{q}Hu) \\ \mathcal{Q}_{dH} &= (H^{\dagger}H) (\bar{q}Hd) \\ \mathcal{Q}_{eH} &= (H^{\dagger}H) (\bar{q}He) \\ \mathcal{Q}_{G} &= \varepsilon_{abc} G^{a\nu}_{\mu} G^{b\rho}_{\nu} G^{c\mu}_{\rho} \\ \mathcal{Q}_{uG} &= (\bar{q}\sigma^{\mu\nu} T^{a}\tilde{H}u) G^{a}_{\mu\nu} \end{aligned}$$

H processes

# Global fit – results [preliminary]

best fit results for  $\bar{C}_i = C_i \frac{v^2}{\Lambda^2}$  from profiling. (ordered by error size)



► The **SMEFT** is a well-defined, general framework for BSM searches

- ► The **SMEFT** is a well-defined, general framework for BSM searches
- It is worth using its full power with a truly global analysis
  - most general <u>BSM characterization</u> (assuming SM sym + fields)
  - universal parameterization for data interpretation

- ► The **SMEFT** is a well-defined, general framework for BSM searches
- It is worth using its full power with a truly global analysis
  - most general <u>BSM characterization</u> (assuming SM sym + fields)
  - universal parameterization for data interpretation
- SMEFTsim is a powerful tool specifically designed for this purpose @LO

- ► The **SMEFT** is a well-defined, general framework for BSM searches
- It is worth using its full power with a truly global analysis
  - most general <u>BSM characterization</u> (assuming SM sym + fields)
  - universal parameterization for data interpretation
- SMEFTsim is a powerful tool specifically designed for this purpose @LO
- Validation of SMEFTsim has been extensive and is still ongoing

- ► The **SMEFT** is a well-defined, general framework for BSM searches
- It is worth using its full power with a truly global analysis
  - most general <u>BSM characterization</u> (assuming SM sym + fields)
  - universal parameterization for data interpretation
- SMEFTsim is a powerful tool specifically designed for this purpose @LO
- Validation of SMEFTsim has been extensive and is still ongoing
- Global fits can and should be done!
  - $\blacktriangleright$  starting from flavor symmetric + pole obs: only  $\sim 23$  parameters
  - can be systematically extended to other observables and improved with higher orders

# **Backup slides**

# The Warsaw basis

Gzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

	$X^3$		$\varphi^6$ and $\varphi^4 D^2$		$\psi^2 arphi^3$
$Q_G$	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	$Q_{arphi}$	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_p u_r \widetilde{arphi})$
$Q_W$	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left( \varphi^{\dagger} D^{\mu} \varphi \right)^{\star} \left( \varphi^{\dagger} D_{\mu} \varphi \right)$	$Q_{d\varphi}$	$(arphi^\dagger arphi) (ar q_p d_r arphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
	$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	$Q_{eW}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{arphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger} \varphi  \widetilde{G}^{A}_{\mu u} G^{A\mu u}$	$Q_{eB}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q^{(3)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\overline{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu u}W^{I\mu u}$	$Q_{uG}$	$(\bar{q}_p \sigma^{\mu u} T^A u_r) \widetilde{\varphi}  G^A_{\mu u}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	$Q_{uW}$	$(\bar{q}_p \sigma^{\mu u} u_r) \tau^I \widetilde{\varphi} W^I_{\mu u}$	$Q^{(1)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	$Q_{uB}$	$(\bar{q}_p \sigma^{\mu u} u_r) \widetilde{\varphi}  B_{\mu u}$	$Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i \overleftrightarrow{D}^{I}_{\mu} \varphi)(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$
$Q_{arphi \widetilde{B}}$	$arphi^\dagger arphi  \widetilde{B}_{\mu u} B^{\mu u}$	$Q_{dG}$	$(\bar{q}_p \sigma^{\mu \nu} T^A d_r) \varphi  G^A_{\mu \nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^{\dagger} \tau^{I} \varphi W^{I}_{\mu \nu} B^{\mu \nu}$	$Q_{dW}$	$(\bar{q}_p \sigma^{\mu u} d_r) \tau^I \varphi  W^I_{\mu u}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$arphi^\dagger  au^I arphi  \widetilde{W}^I_{\mu u} B^{\mu u}$	$Q_{dB}$	$(\bar{q}_p \sigma^{\mu u} d_r) \varphi  B_{\mu u}$	$Q_{arphi u d}$	$i(\widetilde{arphi}^{\dagger}D_{\mu}arphi)(ar{u}_{p}\gamma^{\mu}d_{r})$

# The Warsaw basis

Gzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
$Q_{ll}$	$(ar{l}_p \gamma_\mu l_r) (ar{l}_s \gamma^\mu l_t)$	$Q_{ee}$	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	$Q_{le}$	$(ar{l}_p \gamma_\mu l_r) (ar{e}_s \gamma^\mu e_t)$
$Q_{qq}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar q_s \gamma^\mu q_t)$	$Q_{uu}$	$(ar{u}_p \gamma_\mu u_r)(ar{u}_s \gamma^\mu u_t)$	$Q_{lu}$	$(ar{l}_p \gamma_\mu l_r) (ar{u}_s \gamma^\mu u_t)$
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	$Q_{dd}$	$(ar{d}_p \gamma_\mu d_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{ld}$	$(ar{l}_p \gamma_\mu l_r) (ar{d}_s \gamma^\mu d_t)$
$Q_{lq}^{(1)}$	$(ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$	$Q_{eu}$	$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$	$Q_{qe}$	$(ar{q}_p \gamma_\mu q_r) (ar{e}_s \gamma^\mu e_t)$
$Q_{lq}^{(3)}$	$(\bar{l}_p\gamma_\mu\tau^I l_r)(\bar{q}_s\gamma^\mu\tau^I q_t)$	$Q_{ed}$	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{u}_s \gamma^\mu u_t)$
		$Q_{ud}^{(1)}$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$
		$Q_{ud}^{(8)}$	$(ar{u}_p \gamma_\mu T^A u_r) (ar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{d}_s \gamma^\mu d_t)$
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$
$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-violating			
$Q_{ledq}$	$(ar{l}_p^j e_r) (ar{d}_s q_t^j)$	$Q_{duq}$	$Q_{duq} = \varepsilon^{lphaeta\gamma} \varepsilon_{jk} \left[ (d_p^{lpha})^T C u_r^{eta} \right] \left[ (q_s^{\gamma j})^T C l_t^k \right]$		
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	$Q_{qqu}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$		
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{\alpha j})^TCq_r^{\beta k}\right]\left[(q_s^{\gamma m})^TCl_t^n\right]$		
$Q_{lequ}^{(1)}$	$(ar{l}_p^j e_r) arepsilon_{jk} (ar{q}_s^k u_t)$	$Q_{duu}$	$arepsilon^{lphaeta\gamma}\left[(d_p^{lpha})^TCu_r^{eta} ight]\left[(u_s^{\gamma})^TCe_t ight]$		
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j\sigma_{\mu u}e_r)arepsilon_{jk}(\bar{q}_s^k\sigma^{\mu u}u_t)$				

# **Field redefinitions**

### Gauge bosons

$$\begin{split} \mathcal{L}_{\rm SMEFT} &\supset -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W^{I}_{\mu\nu} W^{I\mu\nu} - \frac{1}{4} G^{a}_{\mu\nu} G^{a\mu\nu} + \\ &+ C_{HB} (H^{\dagger} H) B_{\mu\nu} B^{\mu\nu} + C_{HW} (H^{\dagger} H) W^{I}_{\mu\nu} W^{I\mu\nu} + C_{HWB} (H^{\dagger} \sigma^{I} H) W^{I}_{\mu\nu} B^{\mu\nu} \\ &+ C_{HG} (H^{\dagger} H) G^{a}_{\mu\nu} G^{a\mu\nu} \end{split}$$

### to have canonically normalized kinetic terms we need to

**1.** redefine fields and couplings keeping  $(gV_{\mu})$  unchanged:

$$\begin{split} \mathcal{B}_{\mu} &\rightarrow \mathcal{B}_{\mu}(1+\mathcal{C}_{HB}v^2) & g_1 \rightarrow g_1(1-\mathcal{C}_{HB}v^2) \\ \mathcal{W}_{\mu}^{I} &\rightarrow \mathcal{W}_{\mu}^{I}(1+\mathcal{C}_{HW}v^2) & g_2 \rightarrow g_2(1-\mathcal{C}_{HW}v^2) \\ \mathcal{G}_{\mu}^{a} \rightarrow \mathcal{G}_{\mu}^{a}(1+\mathcal{C}_{HG}v^2) & g_s \rightarrow g_s(1-\mathcal{C}_{HG}v^2) \end{split}$$

2. correct the rotation to mass eigenstates:

$$\begin{pmatrix} \mathcal{W}_{\mu}^{3} \\ \mathcal{B}_{\mu} \end{pmatrix} = \begin{pmatrix} 1 & -v^{2}C_{HWB}/2 \\ -v^{2}C_{HWB}/2 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix}$$

(equivalent to a shift of the Weinberg angle)

Grinstein, Wise Phys.Lett.B265(1991)326 Alonso, Jenkins, Manohar, Trott 1312.2014

### Higgs

$$\mathcal{L}_{\rm SMEFT} \supset \frac{1}{2} D_{\mu} H^{\dagger} D^{\mu} H + C_{H_{\square}} (H^{\dagger} H) (H^{\dagger} \square H) + C_{HD} (H^{\dagger} D_{\mu} H)^{*} (H^{\dagger} D^{\mu} H)$$

to have a canonically normalized kinetic term, in unitary gauge, we need to replace

$$h \rightarrow h \left( 1 + v^2 C_{H_{\Box}} - \frac{v^2}{4} C_{HD} \right)$$

Alonso, Jenkins, Manohar, Trott 1312.2014

SM case.

Parameters in the canonically normalized Lagrangian :  $ar{v}, ar{g}_1, ar{g}_2, s_{ar{ heta}}$ 

The values can be inferred from the measurements e.g. of  $\{\alpha_{em}, m_Z, G_f\}$ :



in the SM at tree-level  $\bar{\kappa} = \hat{\kappa}$ 

### SMEFT case.

Parameters in the canonically normalized Lagrangian :  $ar{v}, ar{g}_1, ar{g}_2, s_{ar{ heta}}$ 

The values can be inferred from the measurements e.g. of  $\{\alpha_{em}, m_Z, G_f\}$ :

$$\begin{aligned} \hat{v}^2 &= \frac{1}{\sqrt{2}G_f} \\ \alpha_{\rm em} &= \frac{\bar{g}_1 \bar{g}_2}{\bar{g}_1^2 + \bar{g}_2^2} \begin{bmatrix} 1 + \bar{v}^2 C_{HWB} \frac{\bar{g}_2^3 / \bar{g}_1}{\bar{g}_1^2 + \bar{g}_2^2} \end{bmatrix} & \sin \hat{\theta}^2 &= \frac{1}{2} \left( 1 - \sqrt{1 - \frac{4\pi \alpha_{\rm em}}{\sqrt{2}G_f m_Z^2}} \right) \\ m_Z &= \frac{\bar{g}_2 \bar{v}}{2c_{\bar{\theta}}} + \delta m_Z(C_i) & \rightarrow \\ G_f &= \frac{1}{\sqrt{2}\bar{v}^2} + \delta G_f(C_i) & \hat{g}_1 &= \frac{\sqrt{4\pi \alpha_{\rm em}}}{\cos \hat{\theta}} \\ \hat{g}_2 &= \frac{\sqrt{4\pi \alpha_{\rm em}}}{\sin \hat{\theta}} \end{aligned}$$

in the SM at tree-level  $\bar{\kappa} = \hat{\kappa}$ in the SMEFT  $\bar{\kappa} = \hat{\kappa} + \delta \kappa(C_i)$ 

To have numerical predictions it is necessary to replace  $\bar{\kappa} \rightarrow \hat{\kappa} + \delta \kappa(C_i)$ for all the parameters in the Lagrangian.

 $\{\alpha_{\rm em}, m_Z, G_f\}$  scheme

$$\begin{split} \delta m_Z^2 &= m_Z^2 \hat{v}^2 \left( \frac{c_{HD}}{2} + 2c_{\hat{\theta}} s_{\hat{\theta}} c_{HWB} \right) \\ \delta G_f &= \frac{\hat{v}^2}{\sqrt{2}} \left( (c_{HI}^{(3)})_{11} + (c_{HI}^{(3)})_{22} - (c_{II})_{1221} \right) \\ \delta g_1 &= \frac{s_{\hat{\theta}}^2}{2(1 - 2s_{\hat{\theta}}^2)} \left( \sqrt{2} \delta G_f + \delta m_Z^2 / m_Z^2 + 2 \frac{c_{\hat{\theta}}^3}{s_{\hat{\theta}}} c_{HWB} \hat{v}^2 \right) \\ \delta g_2 &= -\frac{c_{\hat{\theta}}^2}{2(1 - 2s_{\hat{\theta}}^2)} \left( \sqrt{2} \delta G_f + \delta m_Z^2 / m_Z^2 + 2 \frac{s_{\hat{\theta}}^3}{c_{\hat{\theta}}} c_{HWB} \hat{v}^2 \right) \\ \delta s_{\theta}^2 &= 2c_{\hat{\theta}}^2 s_{\hat{\theta}}^2 (\delta g_1 - \delta g_2) + c_{\hat{\theta}} s_{\hat{\theta}} (1 - 2s_{\hat{\theta}}^2) c_{HWB} \hat{v}^2 \\ \delta m_h^2 &= m_h^2 \hat{v}^2 \left( 2c_{H_{\alpha}} - \frac{c_{HD}}{2} - \frac{3c_H}{2lam} \right) \end{split}$$

To have numerical predictions it is necessary to replace  $\bar{\kappa} \rightarrow \hat{\kappa} + \delta \kappa(C_i)$ for all the parameters in the Lagrangian.

 $\{m_W, m_Z, G_f\}$  scheme

$$\begin{split} \delta m_Z^2 &= m_Z^2 \hat{v}^2 \left( \frac{c_{HD}}{2} + 2c_{\hat{\theta}} s_{\hat{\theta}} c_{HWB} \right) \\ \delta G_f &= \frac{\hat{v}^2}{\sqrt{2}} \left( (c_{Hl}^{(3)})_{11} + (c_{Hl}^{(3)})_{22} - (c_{ll})_{1221} \right) \\ \delta g_1 &= -\frac{1}{2} \left( \sqrt{2} \delta G_f + \frac{1}{s_{\hat{\theta}}^2} \frac{\delta m_Z^2}{m_Z^2} \right) \\ \delta g_2 &= -\frac{1}{\sqrt{2}} \delta G_f \\ \delta s_{\theta}^2 &= 2c_{\hat{\theta}}^2 s_{\hat{\theta}}^2 (\delta g_1 - \delta g_2) + c_{\hat{\theta}} s_{\hat{\theta}} (1 - 2s_{\hat{\theta}}^2) c_{HWB} \hat{v}^2 \\ \delta m_h^2 &= m_h^2 \hat{v}^2 \left( 2c_{H_{\Box}} - \frac{c_{HD}}{2} - \frac{3c_H}{2lam} \right) \end{split}$$

# Global fit – observables [preliminary]

120 observables included so far

- ► 10 near-Z-pole EWPO:  $\Gamma_Z$ ,  $R^0_{\ell,c,b}$ ,  $A^{\ell,c,b,\mu,\tau}_{FB}$ ,  $\sigma^0_h$  LEPI combination hep-ex/0509008
- 21 distribution bins for bhabha scattering at LEPII LEPII combination 1302.3415
- ► 74 dist. bins for W⁺W⁻ production at LEPII OPAL: 0708.1311 ALEPH: Eur.Phys.J. C38 (2004) 147 differential combined: 1302.3415
- ▶ 15 inclusive obs. for Higgs measurements in  $H \rightarrow \gamma \gamma$  and  $H \rightarrow 4\ell$  at LHC
  - ► ATLAS (36 fb⁻¹) ATLAS-CONF-2017-047
  - ► CMS (36 fb⁻¹) CMS PAS HIG-17-031

# **Example:** dependence for $gg \rightarrow h \rightarrow 4\ell$

correction to the inclusive rate, relative to the SM obtained automatically with SMEFTsim

1 + 0.0185 * CG + 0.000425 * CHbox - 0.0001062 * CHD + 22.3 * CHG-0.000422 * CuHAbs -0.000425 * CH13 + 0.000212 * Cl11 + 0.1212 * CHbox + 0.1193 * CHD + 0.04691 * CHW + 0.01345 * CHB + 0.1284 * CHWB+ 0.1279 * CH11 + 0.01765 * CH13 + 0.003545 * CHe + 0.0925 * C11 +0.1819 * Cll1 -0.000491 * CHWB + 0.0001946 * CHl1 + 0.001461 * CHl3 + 0.0001942 * CHe -0.0004985 * CHq1 -0.001724 * CHq3 -0.000259 *  $CH_{\rm H}$  + 0.0001917 * CHd -0.00107 * Cll1 - (0.1166 * CHbox + 0.000747 * CHD + 1.445 * CHG + 0.01088 * CHW + 0.0001615 * CHB + 0.04346 * CHWB + 0.0001276 * CH11 + 0.000786 * CH13 + 0.000598 * CHq1 + 0.01186 * CHq3 + 0.0002017 * CHu + 0.0729 * Cll1 + 0.01098 * CHD -0.0706 * CHWB + 0.0001807 * CdWAbs + 0.02797 * CH11 + 0.2101 * CH13 + 0.02792 * CHe -0.0717 * CHq1 -0.2479 * CHq3 -0.03722 * CHu + 0.02755 * CHd -0.1537 * Cll1 + 0.0002095 * CeWAbs + 0.0003167 * CuWAbs + 2.622 * CH13 -2.551 * CHq3 -1.965 * Cl11)

<u>all</u> the relevant operators are included

• only interference is kept  $\rightarrow$  simple linear expressions

Ilaria Brivio (NBI, Copenhagen)

EFT tools & validation – SMEFT LO

# Global fit to EW precision data - method

### Basics of the fit method



## Global fit to EW precision data - method

Likelihood:  

$$L(C_i) = \frac{1}{\sqrt{(2\pi)_j^n \det V}} \exp\left(-\frac{1}{2}\left(\hat{O} - \bar{O}\right)^T V^{-1}\left(\hat{O} - \bar{O}\right)\right)$$
# observables  
covariance matrix  $V_{i,j} = \Delta_i^{\exp}\rho_{ij}^{\exp}\Delta_j^{\exp} + \Delta_i^{\operatorname{th}}\rho_{ij}^{\operatorname{th}}\Delta_j^{\operatorname{th}}$  error on  $O_i$   
correlation mat.  

$$\Delta_i^{\operatorname{th}} = \sqrt{\Delta_{i,\mathrm{SM}}^2 + \Delta_{\mathrm{SMEFT}}^2 \bar{O}_i^2}$$

# $\Delta_{ m SMEFT}$

### 

 $\rightarrow \dots$ 



in the fit: taken to be a fixed flat relative uncertainty  $0 \leqslant \Delta_{\rm SMEFT} \leqslant 1\%$ 

Ilaria Brivio (NBI, Copenhagen)

EFT tools & validation - SMEFT LO

only a few operators contributing significantly looking for an optimal set of observables share the same relevant ops. sufficient experimental sensitivity

Working assumption:

the dominant effect is the **tree-level interference**  $|\mathcal{A}_{SM}\mathcal{A}_{d=6}^*| \sim \frac{C_i}{\Lambda^2}$ .

whenever this is suppressed, the coefficient  $C_i$  can be neglected even if  $C_i \neq 0$ 

• in specific kinematic regions. e.g. for  $\psi^4$  ops. close to W, Z, h poles

Example - close to a pole

Brivio, Jiang, Trott 1709.06492

most  $\psi^4$  operators give diagrams with less resonances



21/10

Example – close to a pole

Brivio, Jiang, Trott 1709.06492

most  $\psi^4$  operators give diagrams with less resonances

Not always the case. The impact must be checked case by case



the 4-fermion diagram is not removed by poles selection.

only a few operators contributing significantly looking for an optimal set of observables share the same relevant ops. sufficient experimental sensitivity

Working assumption:

the dominant effect is the **tree-level interference**  $|\mathcal{A}_{SM}\mathcal{A}_{d=6}^*| \sim \frac{C_i}{\Lambda^2}$ .

whenever this is suppressed, the coefficient  $C_i$  can be neglected even if  $C_i \neq 0$ 

- in specific kinematic regions. e.g. for  $\psi^4$  ops. close to W, Z, h poles
- for operators with interference  $\propto m_f$



looking for an optimal set of observables

only **a few** operators contributing significantly many observables **share the same** relevant ops. sufficient experimental **sensitivity** 

Working assumption:

the dominant effect is the **tree-level interference**  $|\mathcal{A}_{SM}\mathcal{A}_{d=6}^*| \sim \frac{C_i}{\Lambda^2}$ .

whenever this is suppressed, the coefficient  $C_i$  can be neglected even if  $C_i \neq 0$ 

- in specific kinematic regions. e.g. for  $\psi^4$  ops. close to W, Z, h poles
- for operators with interference  $\propto m_f$
- for operators inducing FCNC

 $\mathcal{A}_{SM}$  is very suppressed:

EFT tools & validation – SMEFT LO

looking for an optimal set of observables

only **a few** operators contributing significantly many observables **share the same** relevant ops. sufficient experimental **sensitivity** 

### Working assumption:

the dominant effect is the **tree-level interference**  $|\mathcal{A}_{SM}\mathcal{A}_{d=6}^*| \sim \frac{C_i}{\Lambda^2}$ .

whenever this is suppressed, the coefficient  $C_i$  can be neglected even if  $C_i \neq 0$ 

- in specific kinematic regions. e.g. for  $\psi^4$  ops. close to W, Z, h poles
- for operators with interference  $\propto m_f$
- for operators inducing FCNC

	total $N_f = 3$	WZH poles
general	2499	$\sim 46$
MFV	$\sim 108$	$\sim 30$
$U(3)^{5}$	$\sim 70$	$\sim 24$

### The counts reduce significantly!

. . .

Brivio, Jiang, Trott 1709.06492