Accelerator neutrino searches for eV-scale sterile neutrinos

Leigh Whitehead
ESSG Town Meeting
CERN
23/10/18

Introduction

- I will give a brief review of the main accelerator-based neutrino experimental searches for eV-scale sterile neutrinos
 - Both short-baseline and long-baseline searches
- Appearance: $ar
 u_\mu o ar
 u_e$ and $u_\mu o
 u_e$
- Disappearance: $\bar{
 u}_{\mu}
 ightarrow \bar{
 u}_{\mu}$ and $u_{\mu}
 ightarrow
 u_{\mu}$
- NC Disappearance: $1-(\nu_{\mu} \rightarrow \nu_{s})$
- I'll predominantly stick with published results but will include a couple of results presented this summer
- I'll close with a few comments on future measurements

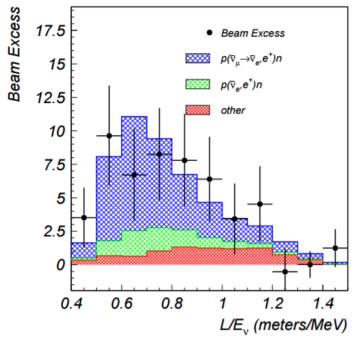
Parameter dependencies

• Expanded 4x4 PMNS matrix has the following form:
$$\begin{pmatrix} U_{e4} & U_{\mu 4} & U_{\mu 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$$

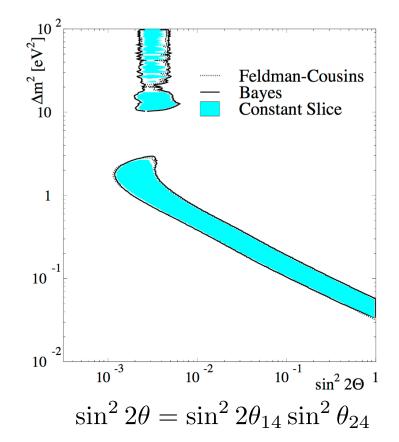
- Appearance: $ar
 u_\mu o ar
 u_e$ and $u_\mu o
 u_e$
 - Sensitive to both θ_{14} and θ_{24}
- Disappearance: $\bar{
 u}_{\mu}
 ightarrow \bar{
 u}_{\mu}$ and $u_{\mu}
 ightarrow
 u_{\mu}$
 - Sensitive to θ₂₄
- NC Disappearance: $1-(\nu_{\mu} \rightarrow \nu_{s})$
 - Sensitive to θ_{24} and θ_{34}

3+1 hypothesis:

$$|U_{e4}|^2 = \sin^2 \theta_{14}$$

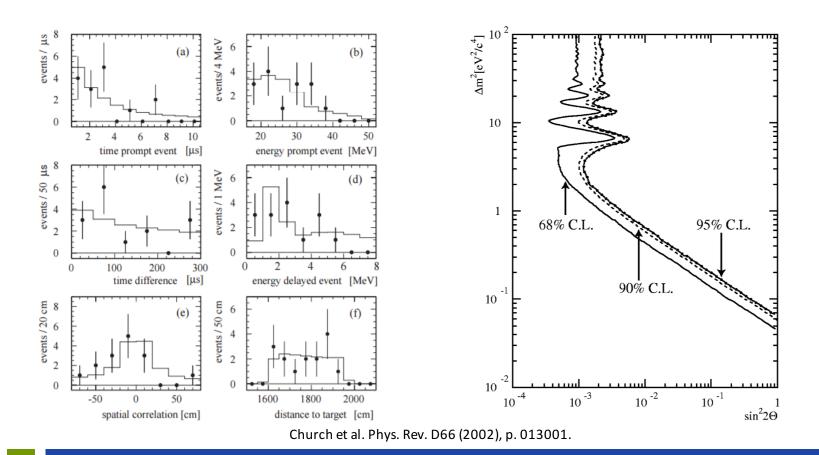

$$|U_{\mu 4}|^2 = \sin^2 \theta_{24} \cos^2 \theta_{14}$$

$$|U_{\tau 4}|^2 = \sin^2 \theta_{34} \cos^2 \theta_{24}$$


All depend on a new mass splitting Δm^2_{41}

LSND

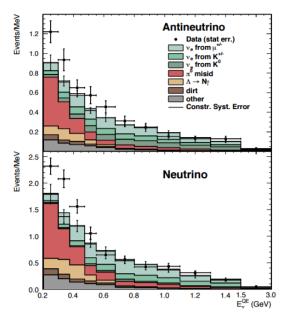
- The story of the 1eV² scale sterile (anti)neutrino starts with LSND
- Saw an excess of electron-like events in short-baseline $ar
 u_\mu o ar
 u_e$
 - Beam came from stopped pion decay

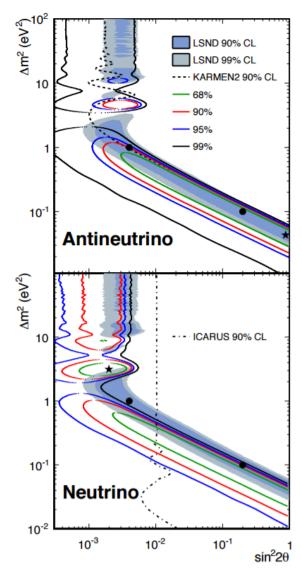

Excess: $87.9 \pm 22.4 \pm 6.0$

A. Aguilar-Arevalo et al. Phys. Rev. D64 (2001), p. 112007.

KARMEN2

• KARMEN2 also searched for short-baseline $ar
u_\mu o ar
u_e$ oscillations but saw no signal

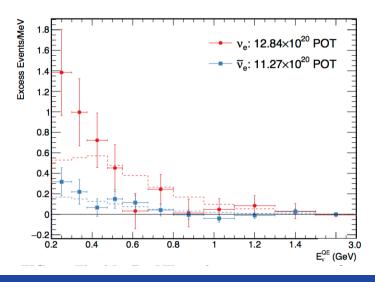


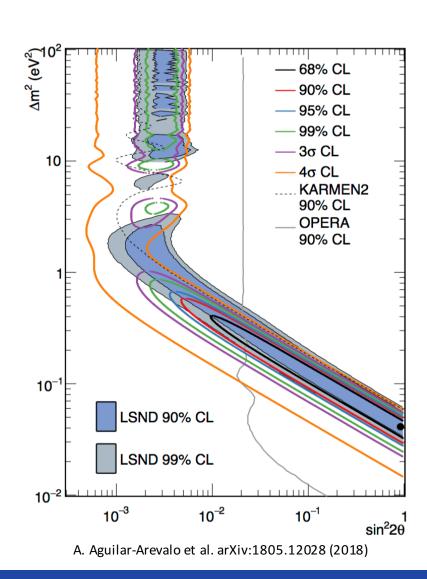

MiniBooNE

• Short-baseline experiment searching for oscillations $\bar{
u}_{\mu} o \bar{
u}_e$ and $u_{\mu} o
u_e$

 Low energy excesses seen in both neutrino and antineutrino modes

 No disappearance signal seen

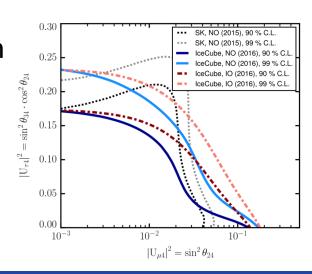


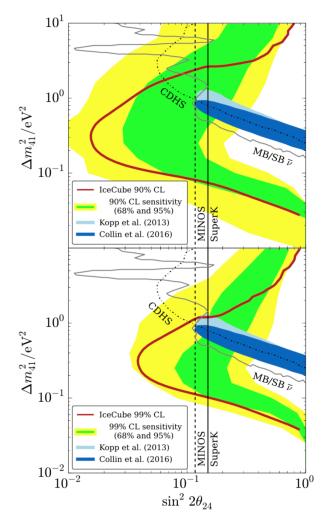


A. Aguilar-Arevalo et al. Phys. Rev. Lett. 110 (2013), p. 161801.

MiniBooNE at Neutrino 2018

- Analysis repeated with the full data exposure (neutrino-mode sample doubled)
- The integrated excess remains and stands at 4.8σ combined from neutrino and antineutrino mode

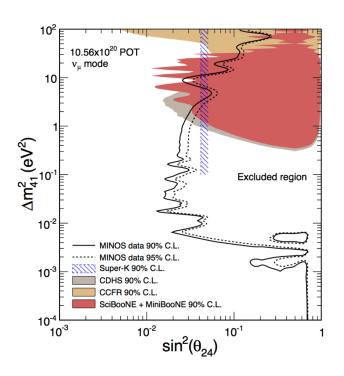


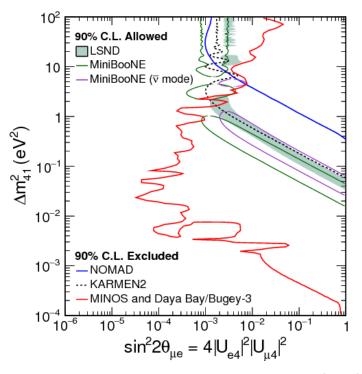

IceCube

 Not an accelerator neutrino detector, but still probes a combination of

$$ar
u_\mu o ar
u_\mu$$
 and $u_\mu o
u_\mu$

- Reliant on a matter effect resonance at high energy for neutrinos traversing Earth
- Strong exclusion of the sterile neutrino hypothesis in the 0.1 - 2.0 eV² range
- Deep-core search sets limits on θ_{24} and θ_{34}
 - At $\Delta m_{41}^2 = 1eV^2$

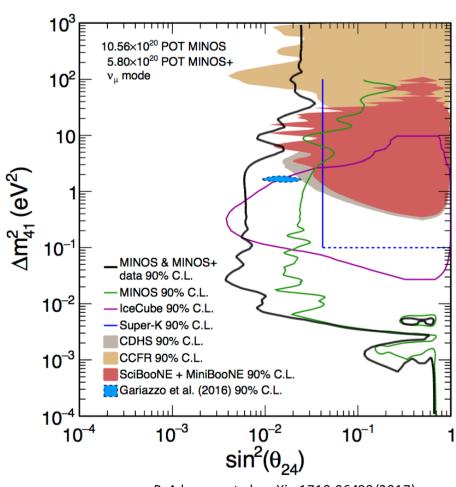




M. G. Aartsen et al. Phys. Rev. Lett. 117, 071801 (2016)M. G. Aartsen et al. Phys. Rev. D. 95, 112002 (2017)

MINOS

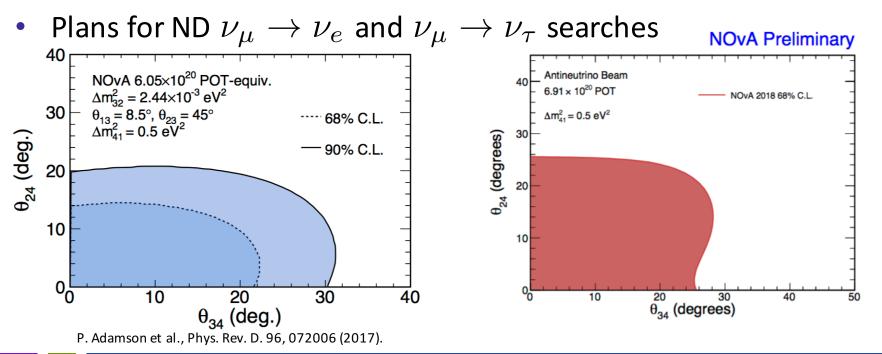
- MINOS probes sterile neutrinos through two channels:
 - Charged-current muon neutrino disappearance
 - Neutral-current disappearance
 - Also performed a combined analysis with Daya Bay (+Bugey-3)



P. Adamson et al., Phys. Rev. Lett. 117, 151803 (2016).

P. Adamson et al., Phys. Rev. Lett. 117, 151801 (2016).

MINOS+ at Neutrino 2018

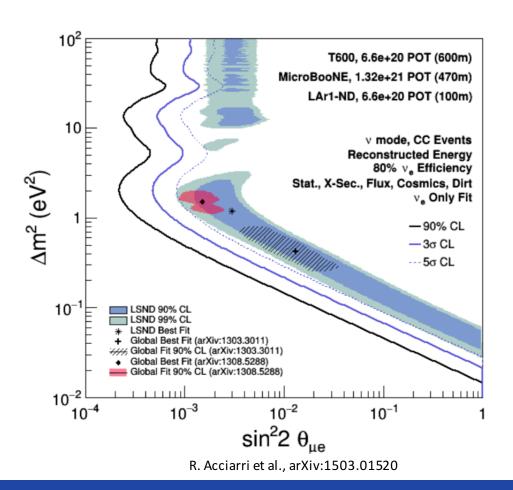

- Updated result containing first two years of MINOS+ data
- Updated analysis technique and inclusion of two years of MINOS+ data
- Strong exclusion of the sterile neutrino hypothesis

P. Adamson et al., arXiv:1710.06488 (2017).

NOvA

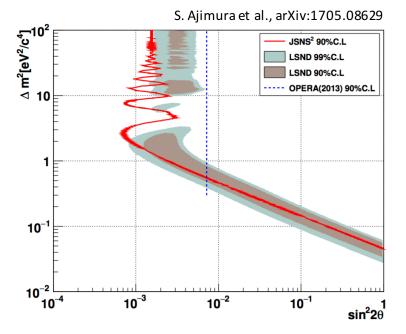
- NOvA has searched for the disappearance of NC interactions
 - Separate analyses for neutrino and antineutrino beam modes
 - Rate-only analysis
 - Valid for the range $0.05 < \Delta m^2_{41} \left(eV^2 \right) < 0.5$
- No signal seen so a limit is set in the $(\theta_{24}, \theta_{34})$ parameter space

The Future


 FNAL SBN programme will consist of three detectors in the same booster beam that provided neutrinos to MiniBooNE

Near: SBND

 Intermediate: MicroBooNE (currently running)


Far: ICARUS T600

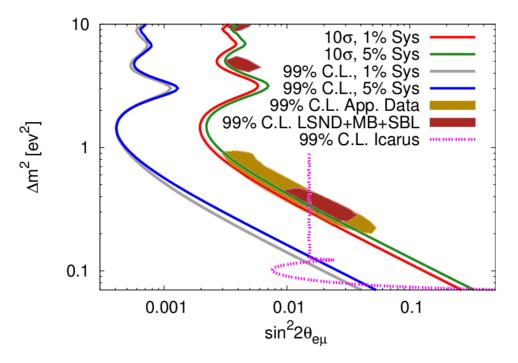
 Sensitivity to exclude LSND allowed region at 5σ

The Future

- JSNS² is a proposed pion decay-at-rest experiment:
 - Provides a direct test of LSND
 - First results expected in 2021

 DUNE is a next-generation neutrino oscillation experiment and will consider a number of different channels:

• Appearance: $ar
u_\mu o ar
u_e$ and $u_\mu o
u_e$


• CC Disappearance: $ar
u_\mu o ar
u_\mu$ and $u_\mu o
u_\mu$

• NC Disappearance: $1-(\nu_{\mu} \rightarrow \nu_{s})$

Can hence measure all three mixing angles in a single experiment

The Future

- NuSTORM will produce a neutrino beam from stored muons
 - Very high statistics and low flux uncertainties
 - Search for short-baseline $u_{\mu}
 ightarrow
 u_{e}$ and $u_{\mu}
 ightarrow
 u_{\mu}$

D. Adey et al., JINST 12 07 (2017), P07020

Summary

- The results for eV-scale sterile neutrinos from accelerator experiments are very conflicted
 - Very strong tension for the eV² sterile neutrino hypothesis
- Excesses seen in (some) appearance experiments that can be analysed under a sterile neutrino hypothesis
- Many null results from both appearance and disappearance searches
- Some very high precision searches coming up in the (near) future