# eV scale sterile neutrino searches at reactor



European Neutrino Town meeting CERN - 23/10/2018

Thierry Lasserre
CEA-Saclay – APC – TUM

## Reactor experiments provide the most precise $\theta_{13}$ value

(1  $\sigma$  uncertainty)

## Double Chooz





#### Daya Bay



### Double Chooz



2 detectors Gd-volume: 20 m<sup>3</sup>



## Daya Bay



8 detectors Gd-volume: 200 m<sup>3</sup>



#### Reno



2 detectors, Gd-volume: 40 m<sup>3</sup>



S/B>100 – Fully contained events (calorimeters) – ultra-low systematics: <0(1%)  $\rightarrow$  High-resolution reactor neutrino spectroscopy with high statistics

## Reactor Neutrino Flux and Spectra



2011: Reevaluation of the  $e-\nu$  conversion procedure – Flux reevaluated at + 3.5%! – 3% systematics

## Reactor Antineutrino Anomaly - 2011



## Several statistically 'moderate' Anomalies Posseidon@ PIK, Gatchina NuStorm Minos SBN NuStorm Deadaleus Nuclear Reactor Neutrino Beam Triggered a lot of projects, since 2011

## 2014: 4-6 MeV spectral distorsion still unexplained...













Concept: relative measurement, not relying on reactor neutrino spectra



## Stéréo – 50 MW ILL compact core – France





- Overburden: 15 mwe under water channel
- Baseline: 9-11m
- Pure <sup>235</sup>U fission spectrum
- 6 identical cells filled with LS-Gd 1.5 ton
   Oscillation analysis independent of the prediction
- High external background mitigated by Heavy shielding and PSD capability on delayed IBD
- 400 IBD/day S/B ~ 1
- 66 days of data analyzed

## Stéréo Results – Exclusion of part the RAA domain



- Robust oscillation analysis based on:
  - Ratios of cell spectra
  - Extensive background characterization (reactor OFF 50% time)

#### Final sensitivity (2020):

- Covers the whole RAA domain
- Factor 4 variation in L/E
- Test the 5 MeV bump (<sup>235</sup>U)

Projected sensitivity to <sup>235</sup>U spectrum shape



## Prospect – 85 MW HFIR compact core - USA





- At the surface. Overburden < 1 mwe!
- Baseline: 7 to 12 m
- Pure <sup>235</sup>U fission spectrum
- 4t <sup>6</sup>Li-doped liquid scintillator segmented detector ~4.5%/VE energy resolution
- High external background mitigated by heavy shielding – Prompt/Delayed IBD PSD capability and event localization
- 750 IBD/day S/B ~ 1.36 Best S/B achieved at the surface

## Prospect Results – Exclusion of part the RAA domain





- 5 $\sigma$  neutrino detection achieved in < 2hr
- Oscillation analysis independent of the prediction
- 33 days of data analyzed Accepted PRL
- RAA best-fit disfavored at > 95%
- Neutrino-4 best-fit disfavored at > 95%

- Next Steps
  - Improved oscillation search with higher statistics
  - <sup>235</sup>U reactor neutrino spectrum measurement (test the 5 MeV bump)
  - Detailed modeling of near-surface backgrounds for future experiments

#### NEOS – 2.8 GW extended core - Korea





- overburden ≥ 20 m.w.e.
- Baseline: 24 m
- Homogeneous liquid scintillator detector of 1 ton
   0.5 % Gd loaded, PSD discrimination for n-signal
- Shieldings: 10 cm B-Pe, 10 cm Pb, muon counter
- 2000 IBD evts/day S/N ~ 22

Phase 1 - completed: 180 d ON & 46 OFF
 Phase 2 - starting: Origin of the 5 MeV bump

#### NEOS – Phase I Results



- Exclusion of part of the reactor anomaly region
- Oscillation expected @E>4 MeV: rely on Daya Bay Bump subtraction
- Caveat: RENO/Daya Bay bumps look differents...



## Caveat concerning low mixings best-fits – NEOS (2016)



#### DANSS – Kalinin 3 GW extended core – Russia



JINST 11 (2016) no.11, P11011



- Overburden ~ 50 m w.e.
- L≈ 10.7-12.7 m Evolution of the neutrino flux and spectrum with distance via lifting platform (top/middle/down every 2.5 days)
- Segmented plastic scintillator 3D-information about each event
- IBD count rate 4000 IBD / day High signal / background ~ 40
- Status: 2 y data taking ½ data analyzed

## DANSS – The strongest RAA exclusion



- Reactor modeling independent analysis based on spectral ratio (down /up) → robust
- Exclude most the reactor antineutrino anomaly region systematics treatment?

$$\chi^2 = \sum_{i=1}^{N} (R_i^{obs} - k \times R_i^{pre})^2 / \sigma_i^2$$

## Neutrino-4 – 100 MW SM-3 compact core –Russia



Overburden: 3-5 mwe

Baseline: 6-12m

■ Pure <sup>235</sup>U fission spectrum





- High external background mitigated by
  - Heavy shielding PSD capability
- 200 IBD/day S/B ~ 0.5
- 480 days of data analyzed

## Neutrino-4: claim for a 3σ sterile neutrino signal

 Coherent sum of E-spectra from 10 cells at 24xL, binned in L/E

Model independent analysis



$$R_{i,k}^{\exp} = \frac{N(E_i^{\nu}, L_k) L_k^2}{K^{-1} \sum_{k}^{K} N(E_i^{\nu}, L_k) L_k^2} =$$

$$= \frac{[1 - \sin^2 2\theta_{14} \sin^2 (1.27 \Delta m_{14}^2 L_k / E_i^{\nu})]}{K^{-1} \sum_{k}^{K} [1 - \sin^2 2\theta_{14} \sin^2 (1.27 \Delta m_{14}^2 L_k / E_i^{\nu})]} = R_{i,k}^{th}$$
(2)



## Neutrino-4: claim for a « $3\sigma$ » sterile neutrino signal

- Analysis
  - Correlations not included (considered small)
  - Systematics considered as negligible
- No-oscillation rejected@3σ (see arXiv:1809.10561)
- Best fit
  - $\Delta m^2 = 7.3 \text{ eV}^2$
  - $\sin^2(2\theta) = 0.44 (17\% \text{ deficit})$

- Large mixing solution!
  - Tension with DC/DB/Reno Stéréo/Prospect/DANSS...

$$R_{i,k}^{\exp} = \frac{N(E_i^{\nu}, L_k) L_k^2}{K^{-1} \sum_{k}^{K} N(E_i^{\nu}, L_k) L_k^2} =$$

$$= \frac{[1 - \sin^2 2\theta_{14} \sin^2 (1.27 \Delta m_{14}^2 L_k / E_i^{\nu})]}{K^{-1} \sum_{k}^{K} [1 - \sin^2 2\theta_{14} \sin^2 (1.27 \Delta m_{14}^2 L_k / E_i^{\nu})]} = R_{i,k}^{th}$$
(2)



- eV-scale sterile neutrinos hypothesis being tested by short baselines reactor expts
   Chandler, DANSS, NEOS, Neutrino-4, Prospect, Stéréo, Solid, ...
- 1<sup>st</sup> Objective achieved: exclusion of part of the RAA Domain. Will improve.
- 2<sup>nd</sup> Objective: Improve knowledge on reactor neutrino spectra
  - Understand the 5 MeV Bump (pure <sup>235</sup>U v-spectra) Not yet completed
  - Reactor Applications

eV-scale sterile neutrinos hypothesis being tested by short baselines reactor expts
 Chandler, DANSS, NEOS, Neutrino-4, Prospect, Stéréo, Solid, ...

- Caveat: Oscillation signal(s)
  - $\sin^2 2\theta \ge 0.1$ : Neutrino-4 claim for sterile v (3 $\sigma$ )
    - Not confirmed by others. Background/analysis/systematics to be discussed.
  - $sin^2 2\theta \ll 0.1$ : NEOS, DANSS best-fits
    - Oscillation signal amplitude comparable to systematics (underestimeted?)
    - Difficult to address at high-significance with current SBL reactor experiments!

- eV-scale sterile neutrinos hypothesis being tested by short baselines reactor expts
   Chandler, DANSS, NEOS, Neutrino-4, Prospect, Stéréo, Solid, ...
- 1<sup>st</sup> Objective achieved: exclusion of part of the RAA Domain. Will improve.
- 2<sup>nd</sup> Objective: Improve knowledge on reactor neutrino spectra
  - Understand the 5 MeV Bump (pure <sup>235</sup>U v-spectra) Not yet completed
- Caveat: Oscillation signal(s)
  - $\sin^2 2\theta \ge 0.1$ : Neutrino-4 claim for sterile v (3σ)
    - Not confirmed by others. Background/analysis/systematics to be discussed.
  - $sin^2 2\theta \ll 0.1$ : NEOS, DANSS best-fits
    - Oscillation signal amplitude comparable to systematics (underestimeted?)
    - Difficult to address at high-significance with current SBL reactor experiments!

- eV-scale sterile neutrinos hypothesis being tested by short baselines reactor expts
   Chandler, DANSS, NEOS, Neutrino-4, Prospect, Stéréo, Solid, ...
- 1<sup>st</sup> Objective achieved: exclusion of part of the RAA Domain. Will improve.
- 2<sup>nd</sup> Objective: Improve knowledge on reactor neutrino spectra
  - Understand the 5 MeV Bump (pure <sup>235</sup>U v-spectra) Not yet completed
- Caveat: Oscillation signal(s)
  - $\sin^2 2\theta \ge 0.1$ : Neutrino-4 claim for sterile v (3σ)
    - Not confirmed by others. Background/analysis/systematics to be discussed.
  - $sin^2 2\theta \ll 0.1$ : NEOS, DANSS best-fits
    - Oscillation signal amplitude comparable to systematics (underestimeted?)
    - Difficult to address at high-significance with current SBL reactor experiments!

| eV-sterile neutrino search results @SBL Reactor Experiments |                                                            |                 |       |                               |                                 |               |     |       |                          |
|-------------------------------------------------------------|------------------------------------------------------------|-----------------|-------|-------------------------------|---------------------------------|---------------|-----|-------|--------------------------|
| Expt                                                        | Reactor                                                    | Over-<br>burden | L (m) | $\sigma_{\rm E}$ / $\sqrt{E}$ | Detector / segmentation         | IBD<br>signal | S/N | syst  | Results                  |
| NEOS                                                        | Extended<br>2800 MW<br><sup>235</sup> U, <sup>239</sup> Pu | 20 mwe          | 24    | 5%                            | Gd-LS<br>1 cell<br>PSD: delayed | 2000/d<br>ay  | 22  | few % | Partial exclusion of RAA |

Gd-LS

6 cells

PSD: delayed

Gd-LS

10 cells

PS+WLS

2500 strips

<sup>6</sup>Li-LS

154 cells

PSD:

prompt/delayed

400/day

200/day

4000/d

ay

750/day

0.5

40

1.4

2.3%

few %

few %

few %

Partial exclusion of RAA

Claim for a signal

 $\Delta m^2 = 7.3 \ eV^2$ 

 $\sin^2(2\theta) = 0.44$ 

Largest exclusion

of RAA

Partial exclusion of RAA

Compact

50 MW

235U

Compact

100 MW

ر 235ر

Extended

3000 MW

<sup>235</sup>U, <sup>239</sup>Pu

Compact

85 MW

235

9-11

6-12

11-13

7-12

4.5%

15 mwe

surface

50 mwe

surface

Stéréo

Neutrino-4

**DANSS** 

Prospect

### Reactor Neutrino Spectra (Daya Bay)

Claim for a mismatch concerning  $^{235}$ U v-flux in reactor models?

