

SOLAR NEUTRINOS

Aldo Ianni INFN-LNGS and Borexino Collaboration, European Neutrino "Town" meeting and ESPP 2019 discussion CERN, April 22-24, 2018

Solar Neutrino Experiments: past and present

Detector	Target mass	Threshold [MeV]	Data taking
Homestake	615 tons C ₂ Cl ₄	0.814	1967-1994
Kamiokande II/III	3kton H ₂ O	9/7.5 / 7.0	1986-1995
SAGE	50tons molted metal Ga	0.233	1990-2007
GALLEX	30.3tons GaCl ₃ -HCl	0.233	1991-1997
GNO	30.3tons GaCl ₃ -HCl	0.233	1998-2003
Super-Kamiokande	22.5ktons	5 7 4.5 3.5	1996-2001 2003-2005 2006-2008 2008-2018
SNO	1kton D ₂ O	6.75/5/6/3.5	1999-2006
Borexino	300ton C ₉ H ₁₂	0.2 MeV	2007-present
KamLAND	1kton LS	0.2 MeV	2009-present
SNO+	1kton H ₂ O	5 MeV	2018

Solar Neutrino Experiments: future

Detector	Target mass	Threshold [MeV]	Info	
Borexino	300ton C ₉ H ₁₂	Sub-MeV	present-???	
KamLAND	1kton LS	Sub-MeV	Main goal DBD	
Super-Kamiokande- Gd	22.5 kton H ₂ O	3.5/4.5	1/2019 resume data taking w/ pure water	
SNO+	780 ton LAB	sub-MeV	2018 LS filling	
JUNO	20 kton	Sub-MeV	2021 data taking	
Hyper-Kamiokande	258 kton H ₂ O	3.5/4.5	2020 start construction 2027 start operation	
DUNE	40 kton LAr	7-10	2024 (10kton 1st module)	
Jinping LS	2 kton LS FV	sub-MeV	Prototype under construction	
Theia	H ₂ O based LS at SURF			
LAr / LXe	GADM or DARWIN size			

The Solar Neutrino Problem viewed by Borexino

 ν fluxes: Solar models (B16-GS98) vs. Borexino

SNP solved in the framework of MSW-LMA sub-leading effect still possible

https://doi.org/10.1038/s41586-018-0624-y

Comprehensive measurement of *pp*-chain solar neutrinos

The Borexino Collaboration*

To be published Oct 25th, 2018

Astrophysics with Solar Neutrinos

Source	Flux [cm ⁻² s ⁻¹] SSM-HZ	Flux [cm ⁻² s ⁻¹] SSM-LZ	Flux [cm ⁻² s ⁻¹] Data
рр	5.98(1±0.006)×10 ¹⁰	6.03(1±0.005)×10 ¹⁰	6.1(1±0.10)×10 ¹⁰ w/o luminosity constraint
рер	1.44(1±0.009)×10 ⁸	1.46(1±0.009)×10 ⁸	1.27(1±0.17)×10 ⁸ (HZ CNO) 1.39(1±0.15)×10 ⁸ (LZ CNO)
⁷ Be	4.93(1±0.06)×10 ⁹	4.50(1±0.06)×10 ⁹	4.99(1±0.03)×10 ⁹
⁸ B	5.46(1±0.12)×10 ⁶	4.50(1±0.12)×10 ⁶	5.35(1±0.03)×10 ⁶
CNO	4.88(1±0.11)×10 ⁸	3.51(1±0.10)×10 ⁸	<7.9×10 ⁸ (2σ)
p-value (pp, Be, B)	0.96	0.43	

Solar and KamLAND neutrino oscillation analysis: tensions

A) Longstanding tension at 2σ level on best-fit for δm^2 between solar and KamLAND oscillation analysis

- 1. CPT invariance?
- 2. Physics beyond the SM
- 3. Subtle unknown effect in present analysis?

B) Day-Night (DN) asymmetry in SuperKamiokande is $-3.3\pm1.1\%$ with DN = 2(D-N)/(D+N) \propto E/ δ m² DNA for KL best-fit it should be -1.7%

Solar Neutrinos and neutrino oscillations

What physics from solar Neutrinos in the future?

- Particle physics (to be done)
 - Measurement of expected matter-vacuum upturn
 - Measurement of day-night asymmetry
- Astrophysics
 - Solve the solar abundance problem by detecting CNO neutrinos

(next future only Borexino, SNO+) of

- improved calculations of solar
 metallicity do not agree with data
- Use solar neutrinos to understand $\frac{1}{2}0.24$ the Sun (*inverse problem*)
- The Sun in a unique laboratory!

Borexino: next future

Main physics goal: CNO neutrinos

- Main challenge: constrain and reduce ²¹⁰Bi background
 - ✓ Constrain by using tagging of ²¹⁰Po and reduce convection inside the FV
 - Reduce by Water extraction purification

- 2018-2019 improvement of thermal insultation system built in 2015 to reduce convection inside the LS
- 2018-2019 commissioning of fluid handling system for new Water Extraction purification
- 2019 commissioning of new water purification system (low ²¹⁰Po water)

SuperKamiokande: next phase

Achievements

- SuperKamiokande has observed solar neutrinos for 22 years (2 solar cycles!)
 - ✓ Some 93,000 solar neutrinos detected
 - ✓ No correlation with solar activity observed
 - \checkmark ~3 σ day-night asymmetry
 - ✓ Neutrino flux measured at 1.7% level

Underway upgrade

- Since June 2018 under refurbishment to be ready for operating with Gd salt
 - ✓ 0.2% Gd salt gives 90% neutron capture efficiency
 - ✓ Phase-I at 0.02%: 10ton of salt and 50% capture efficiency
- Resume data taking expected January 2019 with only water
- Critical point: radiopurity of Gd salt to keep current background level

Physics case

- ✓ Supernova relic neutrinos and electron anti-neutrino physics
- ✓ Day-Night asymmetry measurement at 3.9σ assuming systemtics at 0.4%
- ✓ Upturn measurement at 3σ assuming Δm^2 from best-fit in KamLAND, 22.5kton and 3.5MeV threshold
 - At present: 22.5kton (>5MeV); 16.5kton (>4.5MeV); 8.8kton (>3.5MeV)

Solar Neutrinos in SNO+ Liquid Scintillator

Goals: precision measurement of pep (upturn); ⁸B (upturn+DN); CNO (SSM)

Solar neutrino-electron recoil energy spectrum

- simulated full spectrum
- no α/β PSD or Bi-Po coincidence cuts applied
- target background levels (w/slow ²¹⁰Pb leaching)

⁸B solar neutrinos down to 2 MeV - simulated 6 months of data

⁸B Solar Neutrinos in SNO+ Water

Measured with very low backgrounds!

Hyper-Kamiokande detector

Adapted from M. Shizowa

Design Report 2018: arXiv:1805.04163

- 258 kt water
- 187 kt fid. vol. (1m from wall)
- OD: 1~2m thickness
- Photon detection efficiency:
 - SK detector x 2
 - Better energy resolution
 - Better neutron tagging efficiency (~70%)
- Optional 2nd tank is under discussion.

Inner Detector (ID): ~40,000 of new 50-cm photo sensors Outer Detector (OD): ~6,700 of new 20-cm photo sensors

Solar neutrino measurements in HK

Adapted from M. Shizowa

First direct observation of hep solar v could be done at 2~3 sigma with a few Mton year data

JUNO

- **Center Detector** (3% energy resolution)
 - Acrylic sphere with LS
 - PMT in water tank (18k 20" + 25k 3")
 - 20k LS with 78% PMT coverage

Veto Detector

- Water Cherenkov
- Top tracker (adapted from OPERA)
- Muon tagging and track reconstruction

Calibration system

Covering various particle type, full energy range and position

Timeline

- 2018: surface buildings + acrylic sphere production + PMTs delivery
- 2019-2020: detector construction + electronics production
- 2021: ready for data taking

JUNO: solar neutrinos

- Precision measurement of pp-chain solar neutrino rates by ES
 - Borexino radiopurity assumed
- Precision measurement of Δm_{21}^2
 - will help solve tension between KL and solar fit (0.6% including systematics)
- ⁸B solar neutrinos in [2,3] MeV ROI to probe P_{ee} upturn
 - ¹⁰C cosmogenic background tagging efficiency at 98% level assumed for S/N ~ 1
 - ~ 6000 events in 6 years
- Possibility to search for Day-Night asymmetry and CNO neutrinos under investigation (?)

Solar neutrinos in DUNE

Two detection channels: 1. CC on ⁴⁰Ar

 $\nu_e + {}^{40}\mathrm{Ar} \to e^- + {}^{40}\mathrm{K}^*$

2. ES

This breaks the degeneracy between $\sin^2\theta$ and $\phi(^8B)$ These channels can be separated exploiting the imaging capabilities

DN asymmetry can be probed

100 kt-year solar v interactions Events per MeV __40 Ar 10⁴ 10³ ⁸B+hep, from 10² **SNOwGLoBES** w/smearing from Amoruso et al., 2003 10 [not DUNE smearing] 10 12 14 16 18 6 8 20 Observed Energy (MeV)

- theoretical studies: A. Ioannisian et al., Phys.Rev. D96 (2017) no.3, 036005
- new paper arXiv:1808.08232

DUNE as the Next-Generation Solar Neutrino Experiment

 Francesco Capozzi,^{1,2,3} Shirley Weishi Li,^{1,2,4} Guanying Zhu,^{1,2} and John F. Beacom^{1,2,5}
 ¹Center for Cosmology and AstroParticle Physics (CCAPP), Ohio State University, Columbus, OH 43210
 ²Department of Physics, Ohio State University, Columbus, OH 43210
 ³Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), 80805 München, Germany
 ⁴SLAC National Accelerator Laboratory, Menlo Park, CA, 94025
 ⁵Department of Astronomy, Ohio State University, Columbus, OH 43210 (Dated: 24 August, 2018)

Adapted from K. Scholberg

Capozzi et al. paper presents intriguing sensitivity with DUNE:

BUT: makes very optimistic assumptions

(7% energy resolution, 25% angular resolution, modest bg, no systematics, ...these may not be achieved*)

Overall realistic sensitivity for solar vs still under study

*~20% energy resolution more likely, e.g., μBooNE 1704.02927

Adapted fromK. Scholberg

Conclusions

- 50 years experimental activity on solar neutrino detection
- Achieved an important contributions to particle physics and astrophysics, background reduction
- Yet, more effort needed for
 - A definitive measurement of day-night asymmetry with ⁸B neutrinos
 - A definite measurement of the upturn energy region
 - Detection of CNO and pep neutrinos in upturn region
 - Probe possible sub-leading effects (NSI)
- The above program can be carried out in
 - Borexino, SuperKamiokande, SNO+ from present 2027
 - Juno from 2021
 - DUNE and HyperKamiokande from 2024/2027 2037
- No long term solar neutrino detector in Europe

Acknowledgements

I would like to thank Masayuki Nakahata, Masato Shiozawa, Mark Chen, Kate Scholberg, Ding Xuefeng for providing information on SuperKamiokande, HyperKamiokande, SNO+, DUNE, and JUNO.

Solar neutrino spectra

A. Serenelli et al, Astrophys.J. 835 (2017) no.2, 202

Multivariate fit example

24

Borexino

CNO neutrino sensitivity

Depends on ²¹⁰Bi background.

We assume that ²¹⁰Bi will be measured with 10-20% accuracy

v(CNO) median p-value (LZ/HZ hypothesis)

Thermal insulation to reduce convection motion inside the FV

Thermal insulation (summer 2015)

Hemi-shell #27

Hemi-shell #26