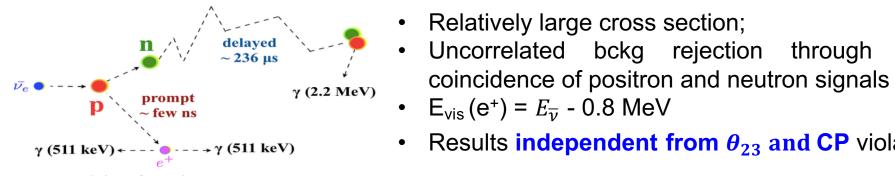




# Potentialities of JUNO and of SBL Reactor Neutrino Experiments

## Vito Antonelli

(INFN Milano and Department of Physics Milano University) On behalf of the JUNO Collaboration


> European Neutrino "Town" Meeting and ESPP 2019 CERN, 22-24 October 2018

### **Reactor neutrino Physics**

□ Nuclear power plants sources of pure, intense and (generally) wellknown electron antineutrino beams ( $\bar{\nu}_e$ ). Survival probability:

 $P_{ee} = 1 - \cos^4 \theta_{13} \sin^2 (2\theta_{12}) \sin^2 \Delta_{21} - \sin^2 (2\theta_{13}) [\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32}]; \quad \Delta_{ij} = \frac{\Delta m_{ij}^2 L}{4 E_{ij}} = \frac{(m_i^2 - m_j^2) L}{4 E_{ij}}$ 

**Δ** Main analysis channel: inverse β decay (IBD):  $\bar{\nu}_e + p \rightarrow e^+ + n$ 



- time
- Results independent from  $\theta_{23}$  and CP violation

#### Successes and perspectives of reactor experiments

- Neutrino discoveries (Cowan & Reines '56)
- $\rightarrow$  LBL exp.(KamLAND; '03): "solar" oscillation confirmation  $\rightarrow$

 $\theta_{12}$  and mainly  $\Delta m_{12}^2$ 

- > SBL (Daya Bay, RENO and Double CHOOZ):  $\theta_{13} \neq 0$  1<sup>st</sup> measurements and  $\theta_{13}$  and  $\Delta m_{32}^2$  determination
- $\succ$  Medium baseline (~50 km) JUNO: study of neutrino mass hierarchy and other topics

# SBL reactor experiments

□ 3 largest SBL experiments: Daya Bay, RENO, Double CHOOZ

#### Common aspects

- >Use of Near and Far Detectors
- > Nested structure with: a) Internal Gd-LS  $\bar{v}_e$  target; b) Pure liquid scintillator (better E measurement); c) Mineral Oil (radioactivity shield)
- > Array of PMTs; External water pool (shield and cosmic ray detector)

#### Specific aspects

Table 1. Comparison of some of the parameters of the Double CHOOZ, RENO and Daya Bay experiments.  $P_{th}$  stands for the total reactor thermal power.

|              | $P_{\rm th} \; [GW]$ | nGd target mass<br>@ far site [tons] | Overburden<br>(near/far) [mwe] | Data-taking<br>(start-end) |
|--------------|----------------------|--------------------------------------|--------------------------------|----------------------------|
| Double Chooz | 8.6                  | 8.3                                  | 80/300                         | 2011-2017                  |
| RENO         | 16.4                 | 15.4                                 | 90/440                         | 2011-2021                  |
| Daya Bay     | 17.4                 | 80                                   | 270/950                        | 2011-2020                  |

Table from: J. P. Ochoa-Ricoux, Int. J. Mod. Phys. Conf. Ser. 46 (2018) 18600001

# SBL reactor experiments-Results

>1<sup>st</sup> observation (starting with Daya Bay '12) of  $\theta_{13} \neq 0$  at > 5  $\sigma$  level

> Thanks to rate and spectral shape analyses,  $\theta_{13}$  and  $\Delta m_{32}^2$  estimate

|                                                                        |                                                                                                                           | EXPERIMENT                                                             |               |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------|
| Parameter                                                              | Daya Bay                                                                                                                  | RENO                                                                   | Double CHOOZ  |
| sin²(2θ <sub>13</sub> )                                                | 0.0856 ± 0.0029                                                                                                           | $0.0896 \pm 0.0048$ (stat) $\pm$ 0.0047( syst)                         | 0.119 ± 0.016 |
| Δm <sup>2</sup> <sub>32</sub>  <br>(10 <sup>-3</sup> eV <sup>2</sup> ) | $\begin{array}{c} 2.471\substack{+0.068\\-0.070} \text{ (NH)} \\ 2.575\substack{+0.068\\-0.070} \text{ (IH)} \end{array}$ | $2.68\pm0.12~{ m (stat)}\pm0.07{ m (syst)}$ ( ${\Delta m^2}_{ m ee}$ ) |               |

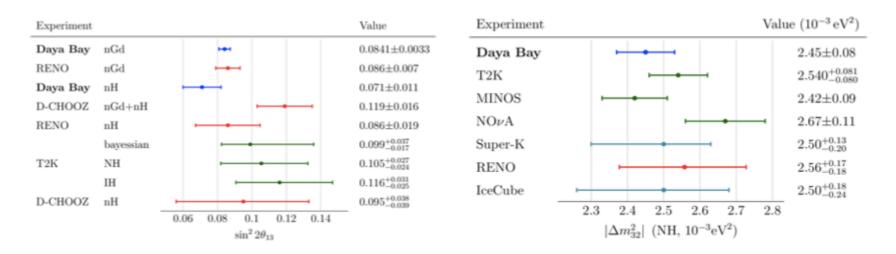



Table from: J.P.Ochoa-Ricoux, Int.J. Mod. Phys. Conf. Ser. 46 (2018) 18600001 and by courtesy of Gonchar, M

## SBL reactor experiments - Results 2

> Looking for spectrum distortion and in combination with MINOS results: search for sterile neutrino and probe of LSND and MiniBoonE hints (reduction of allowed regions:  $\Delta m_{41}^2 < 0.8 \text{ eV}^2$  excluded at 95% C.L.)

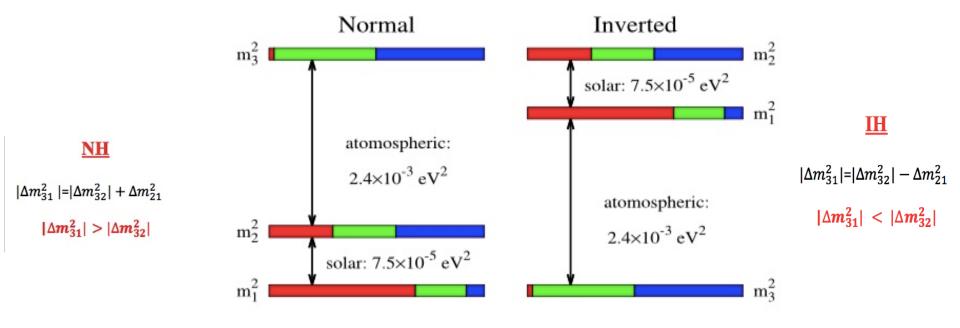
#### Hints confirmed by Daya Bay and RENO of

A)  $\bar{v}_e$  events deficit (already present in old SBL data): reactor antineutrino anomaly.

Hypothesis of explanation: eV-scale sterile neutrino

**Under investigation** by many experiments (STEREO, neutrino-4, PROSPECT, ...). **First results reduce the eventual possible values** to higher  $\Delta m^2$ .

 B) Deviation from predicted spectrum in the region 4-6 MeV (seen also by Double CHOOZ and NEOS).
 Under investigation; probably correlated with reactor power and fuel composition evolution (problems with <sup>235</sup>U).


# Future of SBL experiments

- Double CHOOZ: finished data taking last year, but possible new analyses.
- **\*RENO:** possible extension until 2021 and 6% accuracy also for  $sin^2\theta_{13}$  (already reached for  $\Delta m_{ee}^2$ )
- ✤Daya Bay: by 2020 should reach accuracy level ≤ 3% on both parameters
- Study of the different flux anomalies also with other new SBL
- Possible independent constraint on <sup>235</sup>U yield (important for the study of the "bump" in the 4-6 MeV region)
- Use of movable and segmented detectors: useful to study eventual oscillation to eV-scale sterile neutrino with different possible baselines.

# Open question: the mass hierarchy From the experiments

(See e.g. F. Capozzi *et. al.* Progr.Part.Nucl.Phys.102 (2018) 48 or I. Esteban *et al.* JHEP 1701 (2017) 087)  $\Delta m_{21}^2 = (7.4 \pm 0.2) \times 10^{-5} eV^2 (\text{Solar+KL}) \qquad \Delta m_{31(32)}^2 = (2.42 \pm 0.04) \times 10^{-3} eV^2 (\text{Atmospheric+LBL})$ 

#### Two possible scenarios



# The mass hierarchy determination

Mass Hierarchy (MH) important for
 Potential discoveries of experiments (0v2β; CP violation)
 Discrimination between different extensions of Standard Model → important also for high energy physics strategies

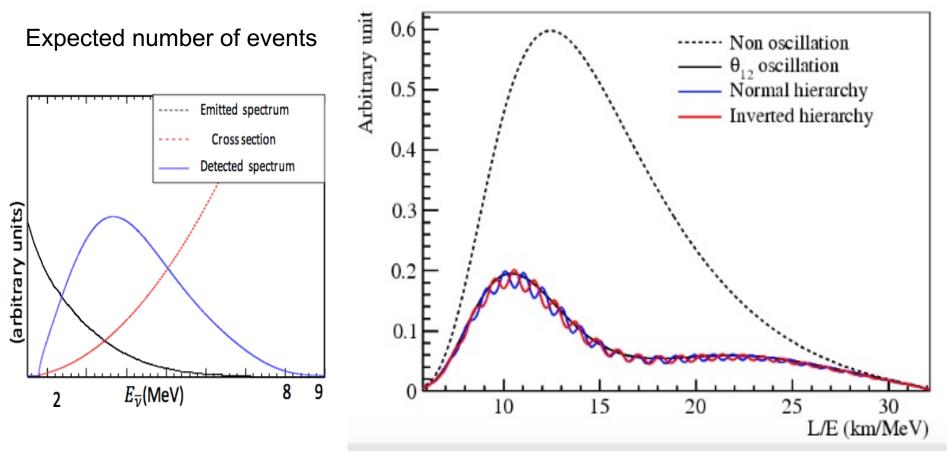
□ Accelerator LBL (T2K and mainly NOvA), compared with reactors, favors NH but no final conclusions at the moment

□ In **future dedicated experiments** with beams from:

- Accelerator LBL (DUNE) (see talk by )
- Atmospheric (PINGU, ORCA) (see talk by)
- <u>Reactors</u>: <u>JUNO</u> ready for data taking in 2021

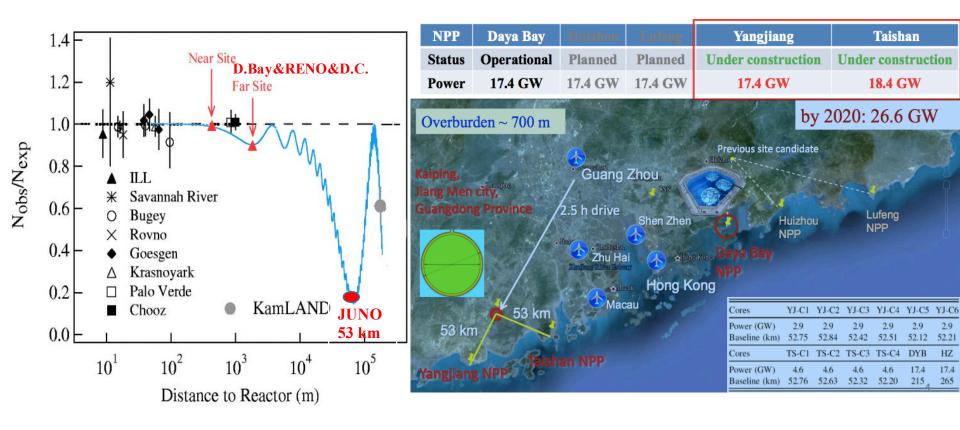
Relatively large  $\sin^2(\theta_{13}) (\cong 0,08-0,09) \rightarrow$ 

**Study** of oscillation probability **corrections** dependent on **MH** "sign" through analysis of **medium baseline reactor**  $\overline{\nu}_e$  **inverse**  $\beta$  **decay.** 


(Original idea by Choubey, Petcov, Piai, PRD 68 (2003) 113006)

#### Spectrum dependence upon the Mass Hierarchy

Electron antineutrino survival probability depends on the mass hierarchy (NH or IH).


 $P_{ee} = 1 - \cos^4 \theta_{13} \sin^2 (2 \theta_{12}) \sin^2 \Delta_{21} - \sin^2 (2 \theta_{13}) (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32}) = 1 - \cos^4 \theta_{13} \sin^2 (2 \theta_{12}) \sin^2 \Delta_{21} - \frac{1}{2} \sin^2 (2 \theta_{13}) [1 - \sqrt{1 - \sin^2 (2 \theta_{12})} \sin^2 \Delta_{21} \cos (2 \Delta_{ee} \pm \varphi)]$  $\Delta_{ij} = \frac{\Delta m_{ij}^2 L}{4E} \text{ and the phase factor } \varphi \text{ is defined in such a way that its sin and cos are combinations of 1-2 mass and mixing parameters }; + \varphi = NH ; -\varphi = IH$ 

Fastly oscillating MH dependent correction superimposed to general oscillation



### The JUNO experiment

- JUNO (Jiangmen Underground Neutrino Observatory): multipurpose reactor  $\overline{\nu}_e$  under construction near Kaiping(South China). Ready for data taking in 2021
  - **Baseline** from reactors (10 cores) to detector about 53 km: optimized in the region of the maximum 1-2 oscillation.

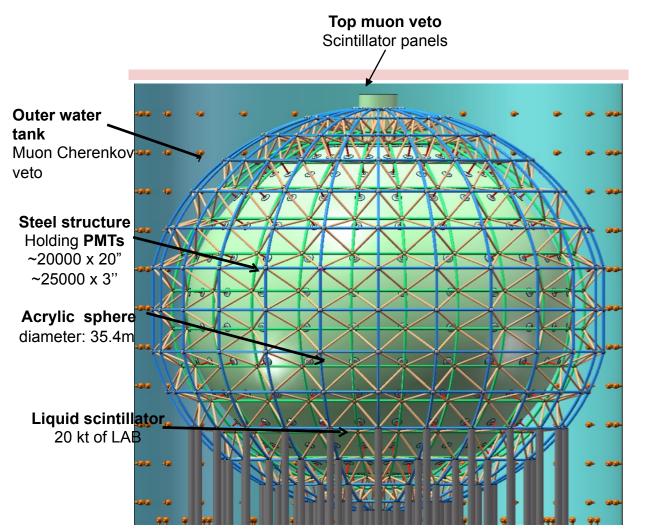


#### JUNO Collaboration

Armenia Yerevan Physics Institute Belgium Université libre de Bruxelles **Brazil** PUC **Brazil**UEL Chile PCUC **Chile**UTFSM China BISEE China Beijing Normal U. China CAGS China ChongQing University China CIAE China CUG **China**DGUT China ECUST China ECUT China Guangxi U. China Harbin Institute of Technology China IGG China IGGCAS China IHEP

China IMP-CAS China Jilin U. China Jinan U. China Nanjing U. China Nankai U. China NCEPU China NUDT China Peking U. China Shandong U. China Shanghai JT U. China SYSU China Tsinghua U. China UCAS China USTC China U. of South China ChinaWu Yi U. China Wuhan U. China Xi'an JT U. China Xiamen University China Zhengzhou U.

Czech Charles U. Finland University of Oulu France APC Paris France CENBG France CPPM Marseille France IPHC Strasbourg France Subatech Nantes Germany ZEA FZ Julich Germany RWTH Aachen U. Germany TUM Germany U. Hamburg Germany IKP FZ Jülich Germany U. Mainz Germany U. Tuebingen Italy INFN Catania Italy INFN di Frascati Italy INFN-Ferrara Italy INFN-Milano Italy INFN-Milano Bicocca Italy INFN-Padova


Italy INFN-Perugia Italy INFN-Roma 3 Latvia IECS Pakistan PINSTECH (PAEC) Russia INR Moscow **Russia**JINR **Russia**MSU Slovakia FMPICU Taiwan National Chiao-Tung U. Taiwan National Taiwan U. Taiwan National United U. Thailand NARIT Thailand PPRLCU Thailand SUT USA UMD1 USA UMD2 



#### Collaboration established on July '14

Now 77 institutions ~600 collaborators

#### The JUNO detector



Underground detector: more than 700 m of rock overburden.

> 20 kton Liquid scintillator (LAB+PPO+BisMB)

| Experiment                | Daya Bay | BOREXINO            | KamLAND             | JUNO                |
|---------------------------|----------|---------------------|---------------------|---------------------|
| LS mass                   | 20 ton   | ~ 300 ton           | ~ 1 kton            | 20 kton             |
| Coverage                  | 12%      | ~ 34%               | ~ 34%               | > 75%               |
| Energy resolution         | 7.5%/√E  | $\sim 5\%/\sqrt{E}$ | $\sim 6\%/\sqrt{E}$ | $\sim 3\%/\sqrt{E}$ |
| Light yield<br>(p.e./MeV) | ~160     | ~ 500               | ~ 250               | ~ 1200              |

#### JUNO main features and milestones of the analysis

□ Medium baseline (53 km) and high statistic required  $\rightarrow$  Large detector mass

 $\Box$  Signature: position of the spectral wiggles in the spectrum

→ Very good E resolution:  $\sigma^{(E)}/\sqrt{E} \cong 3\%$ 

□ Reduction of the cosmogenic background  $\rightarrow$  Rock overburden  $\sim$  700 m

Near detector (Gd-LS with 1800 mm diameter; 2.63 ton at ~30 m from the core, with 30 times the JUNO event rate and resolution ≤ 1.7%. Use of criogenic Si-PM) to know exactly the reactor flux shape and avoid potential effect of eventual spectral distorsions

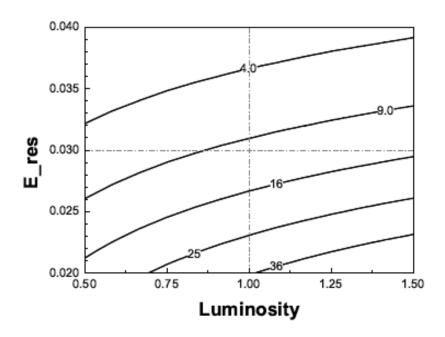
□ Hierarchy discrimination from global fit and comparison of  $\chi^2$  of the minum for the 2 hierarchies.

For resolution  $\geq$  3% : hierarchy discrimination at 3-4  $\sigma$  C.L.

(see the JUNO Yellow Book:, J. of Phys. G: Nucl. Part. Phys. 43 (2016) 030401)

#### □ Main advantages:

- Looking at vacuum oscillations JUNO doesn't suffer from uncertainty on Earth density profile and on CP-violating phase ambiguity.
- No dependence on  $\theta_{13}$  value (affecting only the corrections amplitude); only mild dependence on the 3-4 flavor pattern.

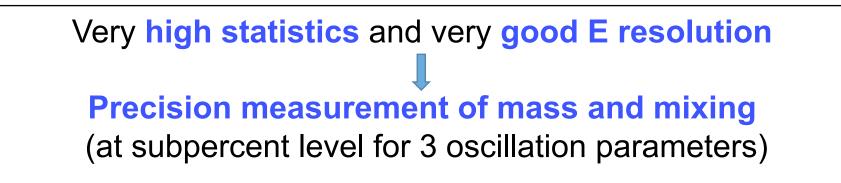

Possible also combined analyses with data from future neutrino telescopes, to further increase the statistical discrimination power of both.

#### Mass hierarchy sensitivity at JUNO

**MH sensitivity** expressed in terms of:  $\Delta \chi^2_{MH} = |\chi^2_{Min}(NH) - \chi^2_{Min}(IH)|$ Interpretation of the result statistical significance is not unique.

In a frequentist framework  $\sqrt{\Delta \chi^2} \sigma$  indicates the hierarchy "sensitivity level"

Iso- $\Delta\chi^2$  contour plot as function of E resolution and luminosity L (L=1 means 6 years of data taking with nominal luminosity).




Main contributions affecting the mass hierarchy sensitivity

|                        | Ideal             | Core distr. | Shape | B/S (stat.) | B/S (shape) | $\left \Delta m_{\mu\mu}^2\right $ |
|------------------------|-------------------|-------------|-------|-------------|-------------|------------------------------------|
| Size                   | $52.5\mathrm{km}$ | Real        | 1%    | 4.5%        | 0.3%        | 1%                                 |
| $\Delta\chi^2_{ m MH}$ | +16               | -4          | -1    | -0.5        | -0.1        | +8                                 |

| PRD 88, 013008 (2013) | Hierarchy<br>discrimination power | With info on Δm <sup>2</sup> <sub>μμ</sub><br>from LBL expts |
|-----------------------|-----------------------------------|--------------------------------------------------------------|
| Statisticsonly        | 4σ                                | 5σ                                                           |
| Realistic case        | 3σ                                | 4σ                                                           |

## Mass and mixing parameters with JUNO



| <b>Oscillation Parameter</b>                                                                                                                | Current<br>accuracy<br>( global 1σ) | Dominant<br>experiment(s) | JUNO<br>Potentiality |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------|----------------------|
| Δ <i>m</i> ↓21 <i>î</i> 2                                                                                                                   | 2.2%                                | KamLAND                   | 0.6%                 |
| $\Delta m \downarrow eel = cosl2 \theta \downarrow 12 \Delta m \downarrow 31 l^2 + sinl2 \theta \downarrow 12$ $\Delta m \downarrow 32 l^2$ | 2.4%                                | MINOS                     | 0.4-0.5%             |
| sinî2 <i>θ</i> ↓12                                                                                                                          | 5.4                                 | SNO                       | 0.7%                 |

# Other nutrino physics topics with JUNO

JUNO's **advantages: large mass, very good E resolution**, radiopurity. Main caveats: cosmogenic and radioactive bckg.

Studies of: <sup>7</sup>Be (interesting for solar metallicity); <sup>8</sup>B (solar metallicity; test of LMA pattern and search for Non Standard Interactions); hep v

#### Supernova burst & diffuse Supernova neutrinos

#### **Geoneutrinos**

Estimation of radiogenic contribution to Earth heat power and test of Earth's geochemical models.

JUNO's advantages: size, radiopurity, depth.

1 year of JUNO data > KL + BX + SNO+

#### □ Atmospheric neutrinos

Difficult, but not impossible task

#### Exotic searches

Search of isotropic and non isotropic Lorentz Invariance Violation; Proton decay (mainly Susy inspired channel); etc.