Custom In-Lab Temperature Control for the RD53 Chip

Mario d’Andrea (UC Davis)
Andromachi Tsirov, Piero Giorgio Verdini
Presented CERN, August 16th 2018, Michigan REU Final Talks
Roadmap

2009
LHC startup, √s 900 GeV

2010
√s=7+8 TeV, L~6x10^{33} cm^{-2}s^{-1},

2011
Go to design energy, nominal luminosity - Phase 0

2012
√s=13~14 TeV, L~1x10^{34} cm^{-2}s^{-1},

2013
Injector + LHC Phase I upgrade

2014
√s=14 TeV, L~2x10^{34} cm^{-2}s^{-1},

2015
LS2

2016
HL-LHC Phase II upgrade:

2017
√s=14 TeV, L~5x10^{34} cm^{-2}s^{-1},

2018
Run 1
~25 fb^{-1}

2019
~75-100 fb^{-1}

2020
~350 fb^{-1}

2021

2022
~3000 fb^{-1}

2023

2030?

Integrated Luminosity
Complete Overhaul of Si Trackers

- Located in the innermost layer
- Si detectors track paths of charged particles.
- How will they be affected by the upgrades?
 - Must be completely replaced in phase II upgrade!
 - In addition, phase II tracker will support:
 - Spatial resolution x4
 - Radiation dose x2 (Hostile!)
 - Hit rate x7
 - Trigger latency x0.2
 - … and more
Immense Challenge for the Read-Out Chip (RoC)

- Spatial resolution x4
- Radiation dose x2 (Hostile!)
- Hit rate x7
- Trigger latency x0.2
- … and more

- The RoC faces:
 - 100x higher readout rate!
 - Hostile radiation
 - … and more
But Who Could do Such a Thing?!

Introducing: The RD53 Read-Out Chip (RoC)!

- 4 years of R&D to reach this point
- Able to handle extremely high hit rates, (3GHz/cm^2), hostile radiation (1 Grad over 10 years), and a 100x higher readout rate compared to current experiment
- Now entering testing phase
Testing Requires Cooling

- The chip produces 2-8 W of heat
- Requires a heat sink to function
- Good practice: keep temperature a controlled variable!
 - ---> Implement a temperature control system
In-Lab Temp Control: Design Goals

The system should be able to

- Remove up to 8W of chip power
- Operate at chip temperatures at or below room temperature with protection when around dewpoint.
- Most important point - Remain stable while within specified operating zones.
- Come to equilibrium quickly (<5 mins)
- Cool multiple chips (goal: 4)
Top-Level Setup

- RD53 Chip
- Peltier
- Active Heat Sink
- Controller
- PC (Service Software)
- Dissipation
Control Process Principles

- Controller monitors the object temperature, $T(t)$
- Compares to the desired set point temperature $r(t)$
- The difference between the two forms an error, $e(t) = T(t) - r(t)$.
 - The controller seeks to minimize $|e(t)|$ via the control variable, $I(t)$
The control variable $I(t)$ is the current supplied to the Peltier. It is some function of $e(t)$ and its derivatives:

$$I(t) = f(E,e,e')$$
Control Process Principles

PID Control Function: (simplest choice)

\[I(t) = f(E, e, \dot{e}) = K_p e + K_i E + K_d \dot{e} \]

The constants \(K_p, K_i, \) and \(K_d \) are the *PID coefficients*.

\[\rightarrow \text{Need to be tuned to match the system’s needs.} \]
Control Process Principles

PID Control Function: (simpler)

\[I(t) = f(E, e, \dot{e}) = K \]

The constants \(K_p \), \(K_i \), and \(K_d \) are the PID coefficients.

-> Need to be tuned to match the system’s needs.
Proof of Concept

Peltier

Temp Sense T(t)

Current I(t)

Heat Sink

Custom Mounting Hardware

Temp Sense T(t)

Controller

RD53
Control process shows excellent stability
- Reaches equilibrium within 1 minute
- Deviations $< 0.01 \, ^\circ C$ once stable
Results: Operating Points

Able to reach -2°C with no load, 4°C with a 2W load, and 14°C with a 7.5W load.

- Could reach lower temperatures with a more powerful Peltier element
Design Goals?

- Remove up to 8W of chip power
- Operate at chip temperatures at or below room temperature with protection when around dewpoint.
- Most important point - Remain *stable* while within specified operating zones.
- Cool multiple chips (goal: 4)

No dewpoint protection yet

Possible with more hardware
Future Work

- Order enough hardware for four chips
- Improve temperature sensor accuracy
- Protect against dewpoint (dry box)

Fig: A Happy Grad Student Learns How to Assemble the Temperature Control System
References

Approved LHC Program

Nominal luminosity = 1×10^{34} cm$^{-2}$s$^{-1}$

CMS Phase II Tracker TDR
CERN-LHCC-2017-009

Installation of Phase I pixel detector

Start of the CMS Phase II upgrade