Dark matter, jets, and substructure at the CMS experiment

[Siddharth Narayanan](mailto:sidn@mit.edu)

SLAC - 2018/07/19

- \blacktriangleright Existence of dark matter strongly suggested by astrophysical observations
	- \triangleright Galaxy rotation curves
	- \triangleright Gravitational lensing
	- \blacktriangleright Bullet Cluster
	- \blacktriangleright ...

 (km/s)

- \triangleright Existence of dark matter strongly suggested by astrophysical observations
	- \blacktriangleright Galaxy rotation curves
	- \triangleright Gravitational lensing
	- \blacktriangleright Bullet Cluster
	- \blacktriangleright ...
- \triangleright Most evidence relies on gravitational effects of DM
- \triangleright Can we find other evidence for interaction between SM and DM?

шт

- \triangleright Existence of dark matter strongly suggested by astrophysical observations
	- \blacktriangleright Galaxy rotation curves
	- \blacktriangleright Gravitational lensing
	- \blacktriangleright Bullet Cluster
	- \blacktriangleright ...
- \triangleright Most evidence relies on gravitational effects of DM
- \triangleright Can we find other evidence for interaction between SM and DM?

- \blacktriangleright Existence of dark matter strongly suggested by astrophysical observations
	- \blacktriangleright Galaxy rotation curves
	- \triangleright Gravitational lensing
	- \blacktriangleright Bullet Cluster
	- \blacktriangleright ...
- \triangleright Most evidence relies on gravitational effects of DM
- \triangleright Can we find other evidence for interaction between SM and DM?

- \blacktriangleright Existence of dark matter strongly suggested by astrophysical observations
	- \blacktriangleright Galaxy rotation curves
	- \triangleright Gravitational lensing
	- \blacktriangleright Bullet Cluster
	- \blacktriangleright ...
- \triangleright Most evidence relies on gravitational effects of DM
- \triangleright Can we find other evidence for interaction between SM and DM?

Seeing the invisible

- \triangleright DM candidates would couple weakly to collider detectors
- \triangleright Not much point in producing DM if we can't see it!
- \blacktriangleright The solution: searches for "mono-X"
	- \triangleright DM produced in association with one or more SM particles (X)

Seeing the invisible

- \triangleright DM candidates would couple weakly to collider detectors
- \triangleright Not much point in producing DM if we can't see it!
- \blacktriangleright The solution: searches for "mono-X"
	- \triangleright DM produced in association with one or more SM particles (X)

- \triangleright **X** creates a transverse momentum imbalance (p_T^{miss})
- \blacktriangleright Large p_T^{miss} + conservation of momentum \Rightarrow invisible particles!
- \triangleright In certain cases, can trigger on **X**

$p_{\rm T}^{\rm miss}$ $_{\text{T}}^{\text{miss}}$ at the LHC

- \triangleright CMS records proton collisions from the LHC
	- ► Today: $\sqrt{s} = 13 \,\text{TeV}$ results

$p_{\rm T}^{\rm miss}$ $_{\text{T}}^{\text{miss}}$ at the LHC

- \triangleright CMS records proton collisions from the LHC
	- ► Today: $\sqrt{s} = 13 \,\text{TeV}$ results
- \blacktriangleright pp events are messy, so replace:

$$
\vec{p}_{\text{T}}^{\text{miss}}=-\left(\sum_{i \in \text{particles}} \vec{p_i}\right)_{\text{T}}
$$

S. Narayanan (MIT) [DM+jets](#page-0-0) 2018/07/19 4/45

- \blacktriangleright Solenoidal magnet
	- \triangleright 3.8 T B field
- \blacktriangleright Silicon tracker
	- \blacktriangleright Charged particles' \vec{p}
	- \blacktriangleright Track vertices

- \blacktriangleright Solenoidal magnet
	- \triangleright 3.8 T B field
- \blacktriangleright Silicon tracker
	- \blacktriangleright Charged particles' \vec{p}
	- \blacktriangleright Track vertices
- \blacktriangleright Calorimeters
	- \blacktriangleright EM and hadronic
	- \triangleright Good energy resolution
	- \blacktriangleright Large coverage

- \blacktriangleright Solenoidal magnet
	- \triangleright 3.8 T B field
- \blacktriangleright Silicon tracker
	- \blacktriangleright Charged particles' \vec{p}
	- \blacktriangleright Track vertices
- \blacktriangleright Calorimeters
	- \blacktriangleright EM and hadronic
	- \triangleright Good energy resolution
	- \blacktriangleright Large coverage
- \blacktriangleright Muon chambers
	- \blacktriangleright ID muons
	- \blacktriangleright Help measure \vec{p}

A broad spectrum of DM models and X

All signatures characterized by high p_T^{miss} , but choice of **X** necessitates different reconstruction and background estimation strategies

A broad spectrum of DM models and X

This talk: focus on DM+jets

lii

Signature Highlights

Mono-top

Signature Highlights

Mono-top u FCNC **good only on** u t BSM BSM

Jet substructure Invisible background estimation

Signature Highlights

Mono-top u FCNC **google** u t BSM BSM

Jet substructure Invisible background estimation

Signature Highlights

Mono-top 11 FCNC **google** u t BSM BSM

Jet substructure Invisible background estimation

Electroweak SM backgrounds Forward jets

Mono-Top

Hallmarks of top quark $+p_T^{\text{miss}}$ T

- \blacktriangleright Let's forget any specific DM model
- \triangleright This final state must violate flavor conservation
	- \triangleright SM FC processes will have a b quark in the final state (up to CKM suppression)
- \triangleright Excess mono-top production \Rightarrow flavor-changing BSM

Hallmarks of top quark $+p_T^{\text{miss}}$ T

- \blacktriangleright Let's forget any specific DM model
- \triangleright This final state must violate flavor conservation
	- \triangleright SM FC processes will have a b quark in the final state (up to CKM suppression)
- \triangleright Excess mono-top production \Rightarrow flavor-changing BSM
- \blacktriangleright SM process is tiny: 0.14 pb

Hallmarks of top quark $+p_T^{\text{miss}}$ T

- \blacktriangleright Let's forget any specific DM model
- \triangleright This final state must violate flavor conservation
	- \triangleright SM FC processes will have a b quark in the final state (up to CKM suppression)
- \triangleright Excess mono-top production \Rightarrow flavor-changing BSM
- \triangleright SM process is tiny: 0.14 pb

Anatomy of a mono-top event Hadronic decay \Rightarrow larger BR, no p_T^{miss}

Anatomy of a mono-top event

Bare quarks hadronize into jets

- \triangleright Bare quarks are not color singlets
- \triangleright Color confinement \Rightarrow production of color singlets (hadrons)
- \blacktriangleright Hadrons collimated in direction of parton
- \triangleright "Jets" are reconstructed using iterative algorithms at LHC

- \triangleright Signal events generally more energetic than SM events
- \blacktriangleright Want to increase S/B? Look for very energetic top quarks!

- \triangleright Signal events generally more energetic than SM events
- \blacktriangleright Want to increase S/B? Look for very energetic top quarks!
- \triangleright Separation between jets: $\Delta R \sim 2m_t/p_T$
	- $p_T > 250 \,\text{GeV} \Rightarrow$ jets $(R = 0.4)$ overlap

Anatomy of a mono-top event Decay products collimate

Reconstruction of top quark

- Three $R = 0.4$ jets \rightarrow single $R = 1.5$ jet
- \triangleright Circular jets \rightarrow oddly-shaped jets
	- \triangleright Jet is the sum of 3 jets
	- \blacktriangleright Anti- $k_T \to C/A$

- \blacktriangleright These are big jets
	- \blacktriangleright $R = 1.5$ can contain up to half the detector
- ► Lots of extra radiation in jet
	- \blacktriangleright PU, ISR, UE/MPI
- \blacktriangleright Combinatorial fakes (q/q)

J. Phys.: Conf. Ser. 645 012008

Jet substructure

 \triangleright Top quark \rightarrow 3q \Rightarrow top jet has 3 "prongs": regions of correlated radiation

- \triangleright Substructure observables are sensitive to such features
	- \triangleright N-subjettiness, subjet algorithms, ECFs,...

Energy correlation functions

ECFs are N-point distance-weighted correlation functions among particles of the jet

$$
e(a, \mathbf{N}, \alpha) \sim \sum_{\mathbf{N} \text{ particles } \in J}
$$

sets of N particles

Energy correlation functions

ECFs are N-point distance-weighted correlation functions among particles of the jet

Energy correlation functions

ECF behavior

$$
e(a, \mathbf{N}, \alpha) \sim \sum_{\mathbf{N} \text{ particles } \in J} \left[\prod_{p \in \text{particles}} \frac{E_p}{E_J} \right] \times \min \left\{ \prod_{p,q \in \text{particles}}^{a} \theta(p,q) \right\}^{\alpha}
$$

- \triangleright Top jet: $N = 3$ correlations are strong, $N = 4$ are weak
- \blacktriangleright q/q jets: $N = 3$ and $N = 4$ are both weak

Space of ECF ratios

 \triangleright Can extend argument to infinitely large ratio space

$$
\frac{e(a, \mathbf{N}, \alpha)}{e(b, \mathbf{M}, \beta)^x}
$$
, where $M \le N$ and $x = \frac{a\alpha}{b\beta}$

 \triangleright Turns out many correlation function ratios can separate signal and background

Building a discriminator

 \blacktriangleright Large number of substructure observables to choose from

- ► Many are highly correlated or not useful
- \triangleright Use boosted decision trees to prune space of observables and extract useful information

Selecting mono-top events

- $p_T^{\text{miss}} > 250 \,\text{GeV}$ (trigger threshold)
- \blacktriangleright CA15 jet, $p_T > 250 \,\mathrm{GeV}$
	- \blacktriangleright Selected by BDT

Selecting mono-top events

S. Narayanan (MIT) [DM+jets](#page-0-0) 2018/07/19 17 / 45

 $Z \rightarrow \nu \nu$ (30%)

Note that p_T^{miss} is the transverse momentum of the **vector** boson

S. Narayanan (MIT) [DM+jets](#page-0-0) 2018/07/19 18 / 45

Background estimation

q/g

Background estimation

Hadronic recoil \equiv momentum imbalance if we pretend ℓ^{\pm} are invisible. Only syst. uncertainty on this extrapolation comes from ℓ ID ($\sim 1-3\%$)

 $\mathcal{B}(Z \to \nu \nu) > \mathcal{B}(Z \to \ell \ell)$

 $\sigma(\gamma) \gg \sigma(W) > \sigma(Z)$

Use production of γ and W to estimate production of Z

Fitting ratios

 \blacktriangleright Free parameters in fit are:

 $\mu_i^{Z\to\nu\nu}$ - number of Z events in SR

 $\mathbf{R}_i^X(\boldsymbol{\theta})$ - ratio of events in SR and CR X

► Each extrapolation \Rightarrow an additional **R**

$$
\mathcal{L}(\mu^{Z \to \nu\nu}; \pmb{\theta}) = \prod_{i \in \text{bins}} \text{Poisson}\left(d_i^{\text{signal}} \Big| B_i^{\text{signal}}(\pmb{\theta}) + (1 + f_i(\pmb{\theta})) \mu_i^{Z \to \nu\nu} + \mu S_i(\pmb{\theta})\right)
$$

$$
\times \prod_{i \in \text{bins}} \text{Poisson}\left(d_i^{\ell\ell} \Big| B_i^{\ell\ell}(\pmb{\theta}) + \frac{\mu_i^{Z \to \nu\nu}}{R_i^{\ell\ell}(\pmb{\theta})}\right)
$$

$$
\times \cdots
$$

 \blacktriangleright Physics challenge boils down to predicting and assigning uncertainty on \boldsymbol{R}

Extrapolation uncertainties

Small experimental uncertainties

Large theoretical uncertainties

Background estimation summary

Background estimation summary

Background estimation summary

Unblinding the data

- \blacktriangleright Too many regions to show all here
- \triangleright SM processes are able to describe data quite well in all regions, including the SRs
- \triangleright No observation of an excess

No observation? Set limits

Benchmark models probe different mono-top kinematics.

Resonant scalar

- \triangleright p_T of top quark increases with m_{ϕ}
- \blacktriangleright Therefore, efficiency of signal selection improves at high m_{ϕ}

FCNC

- ► Falling p_T^{miss} spectra \Rightarrow worse signal eff.
- \triangleright Interesting parameters to constrain are m_V and couplings g_χ, g_η

No observation? Set limits

Benchmark models probe different mono-top kinematics.

Resonant scalar

- \triangleright p_T of top quark increases with m_{ϕ}
- \blacktriangleright Therefore, efficiency of signal selection improves at high m_{ϕ}

FCNC

- ► Falling p_T^{miss} spectra \Rightarrow worse signal eff.
- \triangleright Interesting parameters to constrain are m_V and couplings g_χ, g_η

No observation? Set limits

Benchmark models probe different mono-top kinematics.

Resonant scalar

- \triangleright p_T of top quark increases with m_{ϕ}
- \blacktriangleright Therefore, efficiency of signal selection improves at high m_{ϕ}

FCNC

- Falling p_T^{miss} spectra \Rightarrow worse signal eff.
- \triangleright Interesting parameters to constrain are m_V and couplings g_χ, g_χ

Another DM+substructure search: mono-Higgs(bb)

- \triangleright Backgrounds and estimation technique very similar to mono-top
- \triangleright Sensitive to extended Higgs sectors (2HDM+a, baryonic Z',\dots)
- \blacktriangleright Replace 3-prong/1-b with 2-prong/2-b large-radius jet

Detour: ML for substructure

- \triangleright Top-tagging using QCD-motivated observables works very well
- \triangleright Are we reaching a "maximum" performance threshold?
- \triangleright One approach is to brute-force the problem using deep learning
- \triangleright Factorize the question: physics effects vs. detector effects
- \triangleright Following studies are done using hadron-level simulation
	- \blacktriangleright Madgraph5 at LO for hard scattering
	- ► Pythia8 for hadronization
	- \blacktriangleright No detector simulation
- \triangleright Training is done on a desktop computer
	- \triangleright NVIDIA GTX 1080 GPU
	- \blacktriangleright Keras¹ with tensorflow² backend

 2 <https://github.com/tensorflow/tensorflow>

¹ <https://github.com/keras-team/keras>

Observables

- \triangleright For each particle in the jet, 7 features:
	- \blacktriangleright p^{μ}
	- \triangleright ΔR (particle,jet)
	- \triangleright Soft drop survival
	- \blacktriangleright Particle type $(e^{\pm}, \mu^{\pm}, \gamma, \text{charged hadron}^{\pm}, \text{neutral hadron})$
- \blacktriangleright Rotate the jet so:
	- \blacktriangleright Jet axis coincides with z-axis
	- \blacktriangleright Hardest particle away from jet axis lies in x-z plane

Network architectures

MiT CM_S

- Fully connected: brute force approach

Network architectures

- Fully connected: brute force approach

- Recurrent NN: read the jet as a "sentence", where a particle is a "word"

Network architectures

- Fully connected: brute force approach
- Recurrent NN: read the jet as a "sentence", where a particle is a "word"
- 1D convolutions: allows some invariance to incorrect ordering

DNN performance

- \blacktriangleright Compare fully-connected network to "shallow" network using ECFs
- \blacktriangleright $\mathcal{O}(10^6)$ parameters
- \blacktriangleright Positive: performant classifier without thinking about physics
- \blacktriangleright Negative: that's it?

DNN performance

- \triangleright Compare fully-connected network to "shallow" network using ECFs
- \blacktriangleright $\mathcal{O}(10^6)$ parameters
- \triangleright Positive: performant classifier without thinking about physics
- \blacktriangleright Negative: that's it?
- \triangleright Dramatic improvement from giving structure to the network
- \blacktriangleright Adding more information $(4 \rightarrow 7)$ or more particles $(50 \rightarrow 100)$ helps
-

Next steps/WIP

- \triangleright Quantifying how realistic this improvement is
	- ► What are we learning that QCD observables don't capture?
	- \triangleright Is it IRC unsafe things?
	- \blacktriangleright How does detector smearing hurt?
		- \blacktriangleright Hint: it's painful

Next steps/WIP

- \triangleright Quantifying how realistic this improvement is
	- ► What are we learning that QCD observables don't capture?
	- \triangleright Is it IRC unsafe things?
	- \blacktriangleright How does detector smearing hurt?
		- \blacktriangleright Hint: it's painful
- \triangleright Removing correlation with various nuisances
	- \blacktriangleright Kinematics of jet: mass, p_T
	- \blacktriangleright Pile-up
	- \triangleright QCD uncertainties
		- \blacktriangleright Again, IRC unsafety plays a role

Next steps/WIP

- \triangleright Quantifying how realistic this improvement is
	- ► What are we learning that QCD observables don't capture?
	- \triangleright Is it IRC unsafe things?
	- \blacktriangleright How does detector smearing hurt?
		- \blacktriangleright Hint: it's painful
- \triangleright Removing correlation with various nuisances
	- \blacktriangleright Kinematics of jet: mass, p_T
	- \blacktriangleright Pile-up
	- \triangleright QCD uncertainties
		- \blacktriangleright Again, IRC unsafety plays a role
- \triangleright There is a lot of promise in these approaches!

VBF $H \rightarrow$ invisible

Invisible Higgs

- ► DM fermion could be given mass through Higgs mechanism
- If $2m_{\chi} < m_H$, should observe $H \to \chi \bar{\chi}$
- \triangleright Production mode \Rightarrow mono-**X** channels
	- \rightarrow gg \rightarrow H + ISR \Rightarrow mono-jet
	- ► $VH \Rightarrow \text{mono-}V(qq')$ and mono- $Z(\ell\ell)$
	- \triangleright VBF \Rightarrow VBF+H \rightarrow inv

VBF production of bosons

Characterized by:

- \blacktriangleright Two forward jets
- \blacktriangleright Large $p_{\rm T}^H$

Can replace H with Z or W

 \blacktriangleright Irreducible background

Forward jets are important

- \triangleright As with mono-top and mono-Higgs, we use the jets to mitigate backgrounds
- \triangleright In this case, the jets can be resolved distinctly

Forward jets are challenging

-
- \blacktriangleright "Forward" typically refers to jets outside of the tracker's acceptance
- ► Rely entirely on calorimeters
- \triangleright Energy resolution and trigger efficiency degrade in this region

Forward jets are challenging

-
- \triangleright "Forward" typically refers to jets outside of the tracker's acceptance
- \blacktriangleright Rely entirely on calorimeters
- \triangleright Energy resolution and trigger efficiency degrade in this region
- \triangleright Characterize events using quality within tracker acceptance

$V +$ iet estimation

-
- \triangleright Need to precisely estimate EW+QCD components of $V +$ jets
- ► Prediction is made to NLO in QCD and EW
- \triangleright As with mono-top, correlate Z and W production

Validation of R

- \blacktriangleright How do we know our prediction and uncertainties make sense?
- ► Cannot check in data whether we correctly predict $R = \frac{Z \rightarrow \nu \nu}{W \rightarrow \ell \nu}$ $W\rightarrow\ell\nu$
- \blacktriangleright However, we can check:

$$
\frac{Z \to \ell \ell}{W \to \ell \nu} \approx \frac{Z \to \nu \nu}{W \to \ell \nu}
$$

Validation of R

- \blacktriangleright How do we know our prediction and uncertainties make sense?
- ► Cannot check in data whether we correctly predict $R = \frac{Z \rightarrow \nu \nu}{W \rightarrow \ell \nu}$ $W\rightarrow\ell\nu$
- \blacktriangleright However, we can check:

Results

- \blacktriangleright Combine with other production modes to directly constrain $\mathcal{B}(H \to \text{inv})$
- \triangleright VBF drives the combination

Comparison of LHC and direct detection constraints

- \triangleright LHC constraints strongest at low DM mass
- \triangleright Constraints depend strongly on choice of model

Theoretical prediction of $V +$ iets

- \triangleright Theoretical uncertainties dominate VBF (and most mono-X searches)
- \blacktriangleright Inclusive predictions were dramatically improved in 2016
	- \blacktriangleright 15\% \rightarrow 5\%
	- \blacktriangleright [arXiv:1705.04664]
- \triangleright Strong relationship with theory community on this effort
- Expect VBF predictions at similar level by Run 3

Conclusions

Mono-top

- \triangleright Jet substructure is critical
	- \blacktriangleright Resolved case not feasible in Run 2
	- \blacktriangleright ECF-based tagger came out of interactions with theory community
- \triangleright Strong constraints on flavor-changing DM models
	- \triangleright Search designed to be model independent ⇒ further re-interpretation
- \triangleright ECFs and other substructure tools not limited to mono-top
	- \blacktriangleright Mono-Higgs
	- \triangleright Visible mediator searches
	- \triangleright SM, Higgs, etc.

Conclusions

Mono-top

- \triangleright Jet substructure is critical
	- \blacktriangleright Resolved case not feasible in Run 2
	- ► ECF-based tagger came out of interactions with theory community
- \triangleright Strong constraints on flavor-changing DM models
	- \triangleright Search designed to be model independent ⇒ further re-interpretation
- \triangleright ECFs and other substructure tools not limited to mono-top
	- \blacktriangleright Mono-Higgs
	- \triangleright Visible mediator searches
	- \triangleright SM, Higgs, etc.

VBF $H \rightarrow$ invisible

- \triangleright Very different set of jet challenges
	- \triangleright Difficulty in energy measurement, triggering
	- \blacktriangleright Simpler reconstruction, but huge combinatoric background
- \triangleright Key here is accurate measurement of SM backgrounds
	- \blacktriangleright EW and QCD components (at LO)
- \blacktriangleright Reducing theoretical uncertainties
	- \triangleright Better prediction of W and Z spectra
	- \blacktriangleright Understanding correlation between W and Z

BACKUP

Some substructure observables

- \triangleright N-subjettiness [Thaler *et al*, [arXiv:1011.2268\]](https://arxiv.org/abs/1011.2268)
	- \triangleright τ_N : compatibility of jet with N-axis hypothesis
- \blacktriangleright HEPTopTagger [Anders *et al.* [arXiv:1312.1504\]](https://arxiv.org/abs/1312.1504)
	- Reconstruct W and t decay products inside jet
- \blacktriangleright Energy correlation functions [Moult *et al*, [arXiv:1609.07473\]](https://arxiv.org/abs/1609.07483)
	- \blacktriangleright $e(\alpha, \mathbf{N}, a)$ sensitive to **N**-point correlations in the jet

Comparison to data

Substructure relies on physics that may not be well-simulated by hadronization models. Comparison to data shows that the BDT classifier is well-described.

How does mono-top compare?

- a u m
- \blacktriangleright Sensitivity of mono-top and mono-jet similar (with same assumptions on q_{γ}, q_{a}, m_{V})
- \triangleright If FCNC is embedded in DM model, sensitivity similar to mono-jet
	- \triangleright No DD limits for 3rd gen FCNC because $\sigma_{\text{DM,N}}$ re-interpretation is tricky

Re-interpretation using simplified likelihoods

- \triangleright Searches are designed in a semi-model-independent way
- \triangleright Need a way for new models to be constrained using these results
- \triangleright We cannot release all of our data and expect theory community to redo analysis
- \triangleright Even a complete likelihood is tricky 100s of parameters and constraints

Re-interpretation using simplified likelihoods

- ► Searches are designed in a semi-model-independent way
- \triangleright Need a way for new models to be constrained using these results
- \triangleright We cannot release all of our data and expect theory community to redo analysis
- \triangleright Even a complete likelihood is tricky 100s of parameters and constraints

Solution: simplified likelihood

- \triangleright Run 2 has seen a significant improvement in mono-**X** searches at CMS
	- \blacktriangleright Increased luminosity and cross-sections
	- \triangleright New techniques to estimate backgrounds and identify **X**

- \triangleright Run 2 has seen a significant improvement in mono-X searches at CMS
	- \blacktriangleright Increased luminosity and cross-sections
	- \triangleright New techniques to estimate backgrounds and identify **X**
- \triangleright What are the key challenges for the remainder of Run 2 and beyond?

- \triangleright Run 2 has seen a significant improvement in mono-X searches at CMS
	- \triangleright Increased luminosity and cross-sections
	- \triangleright New techniques to estimate backgrounds and identify **X**
- \triangleright What are the key challenges for the remainder of Run 2 and beyond?
- \triangleright Triggering becomes harder as instantaneous luminosity and pile-up increase
	- \triangleright Mono-**X** signature has relatively few trigger handles
	- \blacktriangleright p_T^{miss} depends on online jet resolution

- \triangleright Run 2 has seen a significant improvement in mono-X searches at CMS
	- \triangleright Increased luminosity and cross-sections
	- \triangleright New techniques to estimate backgrounds and identify **X**
- \triangleright What are the key challenges for the remainder of Run 2 and beyond?
- \triangleright Triggering becomes harder as instantaneous luminosity and pile-up increase
	- \triangleright Mono-**X** signature has relatively few trigger handles
	- \blacktriangleright p_T^{miss} depends on online jet resolution
- \blacktriangleright Many searches rely on accurate theoretical predictions of backgrounds
	- \triangleright $\mathcal{O}(1\%)$ uncertainties on V/Z ratios key for mono-jet sensitivity

- \triangleright Run 2 has seen a significant improvement in mono-X searches at CMS
	- \triangleright Increased luminosity and cross-sections
	- \triangleright New techniques to estimate backgrounds and identify **X**
- \triangleright What are the key challenges for the remainder of Run 2 and beyond?
- \triangleright Triggering becomes harder as instantaneous luminosity and pile-up increase
	- \triangleright Mono-**X** signature has relatively few trigger handles
	- \blacktriangleright p_T^{miss} depends on online jet resolution
- \blacktriangleright Many searches rely on accurate theoretical predictions of backgrounds
	- \triangleright $\mathcal{O}(1\%)$ uncertainties on V/Z ratios key for mono-jet sensitivity
	- Intertainties are larger for other $V + i$ et topologies
		- Among limiting factors for $\mathbf{VBF}+p_T^{\text{miss}}$, mono-top, mono-Higgs

- \triangleright Run 2 has seen a significant improvement in mono-X searches at CMS
	- \triangleright Increased luminosity and cross-sections
	- \triangleright New techniques to estimate backgrounds and identify **X**
- \triangleright What are the key challenges for the remainder of Run 2 and beyond?
- \triangleright Triggering becomes harder as instantaneous luminosity and pile-up increase
	- \triangleright Mono-**X** signature has relatively few trigger handles
	- \blacktriangleright p_T^{miss} depends on online jet resolution
- \blacktriangleright Many searches rely on accurate theoretical predictions of backgrounds
	- \triangleright $\mathcal{O}(1\%)$ uncertainties on V/Z ratios key for mono-jet sensitivity
	- Intertainties are larger for other $V + i$ et topologies
		- Among limiting factors for $\mathbf{VBF}+p_T^{\text{miss}}$, mono-top, mono-Higgs
	- \blacktriangleright VV ratios \Rightarrow mono- $\mathbf{Z}(\ell\ell)$ and mono- γ
	- \triangleright tt V prediction \Rightarrow dileptonic tt +DM

Generalized ECFs

 \triangleright Extension of original ECFs to allow for different angular orders:

$$
e(o, N, \beta) \equiv o e_N^{\beta} = \sum_{i_1 < i_2 < \dots < i_N \in J} \left[\prod_{1 \le k \le j} z_{i_k} \right] \times \min \left\{ \prod_{k,l \in \text{pairs}\{i_1, \dots, i_N\}} \Delta R_{kl}^{\beta} \right\}
$$

 \blacktriangleright e.g.

$$
{}_2e_3^1 = \sum_{a
$$

- \blacktriangleright Summary of parameters:
	- \blacktriangleright $N =$ order of the correlation function. An N-pronged jet should have $e_N \gg e_M$, for $N < M$
	- \bullet o = order of the angular factor.
	- \triangleright β = angular power

Mono-Higgs

DM via Higgs-BSM couplings

 \triangleright 5 additional Higgs bosons, including heavy (A) and light (a) pseudoscalars

- \triangleright Quantize baryon number with gauge field Z'
- \blacktriangleright "SM" h mixes with baryonic h_B , providing effective coupling to Z'

Identifying $H \to b\bar{b}$

- \triangleright As with mono-top, we focus on highly-boosted decays
- \triangleright Two-prong substructure tagging is done using ECFs
- \blacktriangleright Identifying flavor content of $H \to b\bar{b}$ is more important
	- \triangleright Two B mesons \Rightarrow difficult to fake signature
- \triangleright Subjet tagging becomes less efficient at high $p_{\rm T}$

 \blacktriangleright Use "double-b" tagger to see if entire jet is consistent with 2 bs [CMS-BTV-15-002]

Background estimation

As with mono-top, use visible $Z/W/t\bar{t}$ processes to constrain invisible analogs

Background estimation

- As with mono-top, use visible $Z/W/t\bar{t}$ processes to constrain invisible analogs
- \triangleright Control data includes events that both pass and fail the double-b selection
- \triangleright Use this ratio to correct the efficiency of backgrounds in the signal region

Constraints on 2HDM+a

- \triangleright 2HDM+a is a rich model \Rightarrow many free parameters
- \triangleright Some couplings constrained by unitarity and perturbativity
- \triangleright Assume that heavy Higgses all have same mass m_A

Constraints on 2HDM+a

- \triangleright 2HDM+a is a rich model \Rightarrow many free parameters
- \triangleright Some couplings constrained by unitarity and perturbativity
- \triangleright Assume that heavy Higgses all have same mass m_A

Constraints on baryonic Z'

- \blacktriangleright Only free parameters are masses $m_{Z'}$, m_{χ} and couplings g_q , g_{χ}
- \triangleright Can re-cast constraints as a function of σ_{DM-N} for comparison to direct detection

