Dark matter, jets, and substructure at the CMS experiment

 ${\it Siddharth\,Narayanan}$

SLAC - 2018/07/19

- Existence of dark matter strongly suggested by astrophysical observations
 - ► Galaxy rotation curves
 - \blacktriangleright Gravitational lensing
 - \blacktriangleright Bullet Cluster
 - ► ...

- Existence of dark matter strongly suggested by astrophysical observations
 - ▶ Galaxy rotation curves
 - ▶ Gravitational lensing
 - \blacktriangleright Bullet Cluster
 - ▶ ...
- Most evidence relies on gravitational effects of DM
- ► Can we find other evidence for interaction between SM and DM?

CMS

- Existence of dark matter strongly suggested by astrophysical observations
 - ▶ Galaxy rotation curves
 - ▶ Gravitational lensing
 - \blacktriangleright Bullet Cluster
 - ▶ ...
- Most evidence relies on gravitational effects of DM
- ► Can we find other evidence for interaction between SM and DM?

CMS

- Existence of dark matter strongly suggested by astrophysical observations
 - ▶ Galaxy rotation curves
 - ▶ Gravitational lensing
 - \blacktriangleright Bullet Cluster
 - ▶ ...
- Most evidence relies on gravitational effects of DM
- ► Can we find other evidence for interaction between SM and DM?

- Existence of dark matter strongly suggested by astrophysical observations
 - ▶ Galaxy rotation curves
 - ▶ Gravitational lensing
 - \blacktriangleright Bullet Cluster
 - ▶ ...
- Most evidence relies on gravitational effects of DM
- ► Can we find other evidence for interaction between SM and DM?

Seeing the invisible

- ▶ DM candidates would couple weakly to collider detectors
- ▶ Not much point in producing DM if we can't see it!
- ▶ The solution: searches for "mono- \mathbf{X} "
 - DM produced in association with one or more SM particles (\mathbf{X})

Seeing the invisible

- ▶ DM candidates would couple weakly to collider detectors
- ▶ Not much point in producing DM if we can't see it!
- ▶ The solution: searches for "mono- \mathbf{X} "
 - ▶ DM produced in association with one or more SM particles (X)

- **X** creates a transverse momentum imbalance $(p_{\rm T}^{\rm miss})$
- Large $p_{\rm T}^{\rm miss}$ + conservation of momentum \Rightarrow invisible particles!
- \blacktriangleright In certain cases, can trigger on ${\bf X}$

$p_{\rm T}^{\rm miss}$ at the LHC

- CMS records proton collisions from the LHC
 - Today: $\sqrt{s} = 13 \text{ TeV}$ results

$p_{\rm T}^{\rm miss}$ at the LHC

4 / 45

- ► CMS records proton collisions from the LHC
 - Today: $\sqrt{s} = 13 \text{ TeV}$ results
- $\blacktriangleright\ pp$ events are messy, so replace:

► with:

$$\vec{p}_{\mathrm{T}}^{\mathrm{miss}} = -\left(\sum_{i \in \mathrm{particles}} \vec{p}_i\right)_{\mathrm{T}}$$

All particles in sum \Rightarrow all subdetectors help measure p_{T}^{miss} !

All particles in sum \Rightarrow all subdetectors help measure $p_{\rm T}^{\rm miss}$!

- \blacktriangleright Solenoidal magnet
 - $\blacktriangleright~3.8\,\mathrm{T}$ B field
- \blacktriangleright Silicon tracker
 - \blacktriangleright Charged particles' \vec{p}
 - \blacktriangleright Track vertices

All particles in sum \Rightarrow all subdetectors help measure $p_{\rm T}^{\rm miss}$!

- \blacktriangleright Solenoidal magnet
 - $\blacktriangleright~3.8\,\mathrm{T}$ B field
- \blacktriangleright Silicon tracker
 - \blacktriangleright Charged particles' \vec{p}
 - \blacktriangleright Track vertices
- ► Calorimeters
 - $\blacktriangleright\,$ EM and hadronic
 - ► Good energy resolution
 - ► Large coverage

All particles in sum \Rightarrow all subdetectors help measure $p_{\rm T}^{\rm miss}$!

- \blacktriangleright Solenoidal magnet
 - $\blacktriangleright~3.8\,\mathrm{T}$ B field
- \blacktriangleright Silicon tracker
 - \blacktriangleright Charged particles' \vec{p}
 - \blacktriangleright Track vertices
- ► Calorimeters
 - $\blacktriangleright\,$ EM and hadronic
 - ► Good energy resolution
 - ► Large coverage
- ► Muon chambers
 - ► ID muons
 - \blacktriangleright Help measure \vec{p}

A broad spectrum of DM models and ${\bf X}$

All signatures characterized by high $p_{\rm T}^{\rm miss}$, but choice of **X** necessitates different reconstruction and background estimation strategies

A broad spectrum of DM models and ${\bf X}$

This talk: focus on DM+jets

Signature

Highlights

Signature

Jet substructure Invisible background estimation

Highlights

Signature

Jet substructure Invisible background estimation

Highlights

H

a

 W^{\mp}, Z

Signature

Jet substructure Invisible background estimation

Mono-Top

Hallmarks of top quark+ $p_{\rm T}^{\rm miss}$

CMS

- $\blacktriangleright\,$ Let's forget any specific DM model
- ▶ This final state must violate flavor conservation
 - ► SM FC processes will have a b quark in the final state (up to CKM suppression)
- \blacktriangleright Excess mono-top production \Rightarrow flavor-changing BSM

Hallmarks of top quark+ $p_{\rm T}^{\rm miss}$

- \blacktriangleright Let's forget any specific DM model
- ▶ This final state must violate flavor conservation
 - ► SM FC processes will have a b quark in the final state (up to CKM suppression)
- ▶ Excess mono-top production \Rightarrow flavor-changing BSM
- \blacktriangleright SM process is tiny: 0.14 pb

Hallmarks of top quark+ $p_{\rm T}^{\rm miss}$

- \blacktriangleright Let's forget any specific DM model
- ▶ This final state must violate flavor conservation
 - ► SM FC processes will have a *b* quark in the final state (up to CKM suppression)
- \blacktriangleright Excess mono-top production \Rightarrow flavor-changing BSM
- \blacktriangleright SM process is tiny: 0.14 pb

Anatomy of a mono-top event Hadronic decay \Rightarrow larger BR, no p_{T}^{miss}

Anatomy of a mono-top event

10 / 45

Bare quarks hadronize into jets

- ▶ Bare quarks are not color singlets
- ▶ Color confinement ⇒ production of color singlets (hadrons)
- ▶ Hadrons collimated in direction of parton
- ► "Jets" are reconstructed using iterative algorithms at LHC

Anatomy of a mono-top event Bare quarks hadronize into jets

- Signal events generally more energetic than SM events
- ► Want to increase S/B? Look for very energetic top quarks!

- Signal events generally more energetic than SM events
- ► Want to increase S/B? Look for very energetic top quarks!
- Separation between jets: $\Delta R \sim 2m_t/p_{\rm T}$
 - ▶ $p_{\rm T} > 250 \,{\rm GeV} \Rightarrow {\rm jets} \ (R = 0.4)$ overlap

Reconstruction of top quark

- Three R = 0.4 jets \rightarrow single R = 1.5 jet
- \blacktriangleright Circular jets \rightarrow oddly-shaped jets
 - \blacktriangleright Jet is the sum of 3 jets
 - Anti- $k_{\rm T} \rightarrow {\rm C/A}$

- ► These are **big** jets
 - R = 1.5 can contain up to half the detector
- \blacktriangleright Lots of extra radiation in jet
 - \blacktriangleright PU, ISR, UE/MPI
- Combinatorial fakes (q/g)

J. Phys.: Conf. Ser. 645 012008

Jet substructure

▶ Top quark \rightarrow 3q \Rightarrow top jet has 3 "prongs": regions of correlated radiation

- ► **Substructure** observables are sensitive to such features
 - \blacktriangleright N-subjettiness, subjet algorithms, ECFs, . . .

Energy correlation functions

ECFs are N-point distance-weighted correlation functions among particles of the jet

$$e(a, \mathbf{N}, \alpha) \sim \sum_{\mathbf{N} \text{ particles } \in J}$$

sets of \mathbf{N} particles

[arXiv:1609.07473]

Energy correlation functions

ECFs are \mathbf{N} -point distance-weighted correlation functions among particles of the jet

[arXiv:1609.07473]

Energy correlation functions

ECFs are N-point distance-weighted correlation functions among particles of the jet $e(a, \mathbf{N}, \alpha) \sim \sum_{\mathbf{N} \text{ particles } \in J} \left[\prod_{p \in \text{particles}} \frac{E_p}{E_J}\right] \times \min\left\{\prod_{p,q \in \text{particles}}^a \theta(p, q)\right\}^{\alpha}$ sets of **N** particles energy fractions opening angle $_{2}e_{4}$ [arXiv:1609.07473] S. Naravanan (MIT) DM+iets 2018/07/19 13 / 45

ECF behavior

$$e(a, \mathbf{N}, \alpha) \sim \sum_{\mathbf{N} \text{ particles } \in J} \left[\prod_{p \in \text{particles}} \frac{E_p}{E_J} \right] \times \min \left\{ \prod_{p, q \in \text{particles}}^a \theta(p, q) \right\}^{\alpha}$$

- ▶ Top jet: $\mathbf{N} = 3$ correlations are strong, $\mathbf{N} = 4$ are weak
- q/g jets: $\mathbf{N} = 3$ and $\mathbf{N} = 4$ are both weak

Space of ECF ratios

▶ Can extend argument to infinitely large ratio space

$$\frac{e(a,\mathbf{N},\alpha)}{e(b,\mathbf{M},\beta)^x}, \text{ where } M \leq N \text{ and } x = \frac{a\alpha}{b\beta}$$

 \blacktriangleright Turns out many correlation function ratios can separate signal and background

Building a discriminator

Background acceptance CMSPreliminary 110 < m_{sp} < 210 GeV ► Large number of substructure observables to choose from ► Many are highly correlated or not useful ► Use boosted decision trees to prune 10space of observables and extract useful information Combined BDT $\epsilon_{\rm bkg}(\epsilon_{\rm sig}=0.5)$ 50 ECF 6.9%----- 11 ECF au_{32} Combined BDT ----- τ^{SD}+f_{rec} 4.7% ----- Groomed T₃₂ 10

Signal efficiency
Selecting mono-top events

- $p_{\rm T}^{\rm miss} > 250 \,{\rm GeV}$ (trigger threshold)
- CA15 jet, $p_{\rm T} > 250 \,{\rm GeV}$
 - ► Selected by BDT

Selecting mono-top events

S. Narayanan (MIT)

 $Z \to \nu \nu ~(30\%)$

Note that $p_{\rm T}^{\rm miss}$ is the transverse momentum of the vector boson

S. Narayanan (MIT)

 $\rm DM+jets$

2018/07/19 18 / 45

Background estimation

Background estimation

Hadronic recoil \equiv momentum imbalance if we pretend ℓ^{\pm} are invisible. Only syst. uncertainty on this extrapolation comes from ℓ ID (~ 1-3%)

 $\mathcal{B}(Z \to \nu\nu) > \mathcal{B}(Z \to \ell\ell)$

S. Narayanan (MIT)

 $\sigma(\gamma) \gg \sigma(W) > \sigma(Z)$

Use production of γ and W to estimate production of Z

DM+iets

2018/07/19 21 / 45

Fitting ratios

► Free parameters in fit are:

 $\mu_i^{Z \to \nu \nu}$ - number of Z events in SR $\mathbf{R}_i^X(\boldsymbol{\theta})$ - ratio of events in SR and CR X

▶ Each extrapolation \Rightarrow an additional **R**

$$\mathcal{L}(\boldsymbol{\mu}^{Z \to \nu\nu}; \boldsymbol{\theta}) = \prod_{i \in \text{bins}} \text{Poisson} \left(d_i^{\text{signal}} \Big| B_i^{\text{signal}}(\boldsymbol{\theta}) + (1 + f_i(\boldsymbol{\theta})) \boldsymbol{\mu}_i^{Z \to \nu\nu} + \boldsymbol{\mu} S_i(\boldsymbol{\theta}) \right)$$
$$\times \prod_{i \in \text{bins}} \text{Poisson} \left(d_i^{\ell \ell} \Big| B_i^{\ell \ell}(\boldsymbol{\theta}) + \frac{\boldsymbol{\mu}_i^{Z \to \nu\nu}}{\boldsymbol{R}_i^{\ell \ell}(\boldsymbol{\theta})} \right)$$
$$\times \cdots$$

 \blacktriangleright Physics challenge boils down to predicting and assigning uncertainty on R

Extrapolation uncertainties

Small experimental uncertainties

Large theoretical uncertainties

Background estimation summary

Background estimation summary

Background estimation summary

Unblinding the data

- ▶ Too many regions to show all here
- ▶ SM processes are able to describe data quite well in all regions, including the SRs
- ▶ No observation of an excess

No observation? Set limits

Benchmark models probe different mono-top kinematics.

 $Resonant\ scalar$

- $p_{\rm T}$ of top quark increases with m_{ϕ}
- ▶ Therefore, efficiency of signal selection improves at high m_{ϕ}

FCNC

- Falling $p_{\rm T}^{\rm miss}$ spectra \Rightarrow worse signal eff.
- ► Interesting parameters to constrain are m_V and couplings g_{χ}, g_q

No observation? Set limits

Benchmark models probe different mono-top kinematics.

Resonant scalar

- $p_{\rm T}$ of top quark increases with m_{ϕ}
- ► Therefore, efficiency of signal selection improves at high m_{ϕ}

FCNC

- Falling $p_{\rm T}^{\rm miss}$ spectra \Rightarrow worse signal eff.
- Interesting parameters to constrain are m_V and couplings g_{χ}, g_q

S. Narayanan (MIT)

No observation? Set limits

Benchmark models probe different mono-top kinematics.

Resonant scalar

- $p_{\rm T}$ of top quark increases with m_{ϕ}
- ► Therefore, efficiency of signal selection improves at high m_{ϕ}

FCNC

- Falling $p_{\rm T}^{\rm miss}$ spectra \Rightarrow worse signal eff.
- Interesting parameters to constrain are m_V and couplings g_{χ}, g_q

Another DM+substructure search: mono-Higgs(bb)

- Backgrounds and estimation technique very similar to mono-top
- ► Sensitive to extended Higgs sectors (2HDM+a, baryonic Z',...)
- ► Replace 3-prong/1-b with 2-prong/2-b large-radius jet

Detour: ML for substructure

- \blacktriangleright Top-tagging using QCD-motivated observables works very well
- ▶ Are we reaching a "maximum" performance threshold?
- ▶ One approach is to brute-force the problem using deep learning
- ▶ Factorize the question: physics effects vs. detector effects
- ► Following studies are done using hadron-level simulation
 - ▶ Madgraph5 at LO for hard scattering
 - ▶ Pythia8 for hadronization
 - ▶ No detector simulation
- ▶ Training is done on a desktop computer
 - ▶ NVIDIA GTX 1080 GPU
 - \blacktriangleright Keras¹ with tensorflow² backend

²https://github.com/tensorflow/tensorflow

¹https://github.com/keras-team/keras

Observables

- ► For each particle in the jet, 7 features:
 - p^{μ}
 - $\Delta R(\text{particle,jet})$
 - ► Soft drop survival
 - ▶ Particle type $(e^{\pm}, \mu^{\pm}, \gamma, \text{charged hadron}^{\pm}, \text{neutral hadron})$
- ▶ Rotate the jet so:
 - \blacktriangleright Jet axis coincides with z-axis
 - \blacktriangleright Hardest particle away from jet axis lies in x-z plane

Network architectures

CMS

- Fully connected: brute force approach

S. Narayanan (MIT)

Network architectures

- Fully connected: brute force approach

- Recurrent NN: read the jet as a "sentence", where a particle is a "word"

Network architectures

- Fully connected: brute force approach
- Recurrent NN: read the jet as a "sentence", where a particle is a "word"
- 1D convolutions: allows some invariance to incorrect ordering

DNN performance

CMS

- ► Compare fully-connected network to "shallow" network using ECFs
- ▶ $\mathcal{O}(10^6)$ parameters
- Positive: performant classifier without thinking about physics
- ► Negative: that's it?

DNN performance

CMS

- ► Compare fully-connected network to "shallow" network using ECFs
- ▶ $\mathcal{O}(10^6)$ parameters
- Positive: performant classifier without thinking about physics
- ► Negative: that's it?
- Dramatic improvement from giving structure to the network
- ► Adding more information (4 → 7) or more particles (50 → 100) helps
- ▶ C-LSTMs have $\mathcal{O}(10^5)$ parameters

Next steps/WIP

- ▶ Quantifying how realistic this improvement is
 - ▶ What are we learning that QCD observables don't capture?
 - ▶ Is it IRC unsafe things?
 - ▶ How does detector smearing hurt?
 - ► Hint: it's painful

Next steps/WIP

- ▶ Quantifying how realistic this improvement is
 - ▶ What are we learning that QCD observables don't capture?
 - ▶ Is it IRC unsafe things?
 - ▶ How does detector smearing hurt?
 - ► Hint: it's painful
- ▶ Removing correlation with various nuisances
 - Kinematics of jet: mass, $p_{\rm T}$
 - ▶ Pile-up
 - ► QCD uncertainties
 - ▶ Again, IRC unsafety plays a role

Next steps/WIP

- ▶ Quantifying how realistic this improvement is
 - ▶ What are we learning that QCD observables don't capture?
 - ▶ Is it IRC unsafe things?
 - ▶ How does detector smearing hurt?
 - ► Hint: it's painful
- ▶ Removing correlation with various nuisances
 - Kinematics of jet: mass, $p_{\rm T}$
 - ▶ Pile-up
 - ► QCD uncertainties
 - ▶ Again, IRC unsafety plays a role
- ▶ There is a lot of promise in these approaches!

VBF $H \rightarrow \text{invisible}$

Invisible Higgs

- \blacktriangleright DM fermion could be given mass through Higgs mechanism
- If $2m_{\chi} < m_H$, should observe $H \to \chi \bar{\chi}$
- Production mode \Rightarrow mono-**X** channels
 - $\blacktriangleright \ gg \to H + \mathrm{ISR} \Rightarrow \mathrm{mono-jet}$
 - $VH \Rightarrow \text{mono-}V(qq')$ and $\text{mono-}Z(\ell\ell)$
 - $\blacktriangleright \text{ VBF} \Rightarrow \text{VBF}{+}H \rightarrow \text{inv}$

VBF production of bosons

Characterized by:

- ► Two forward jets
- ► Large p_{T}^{H}

Can replace ${\cal H}$ with Z or W

► Irreducible background

Forward jets are important

- ▶ As with mono-top and mono-Higgs, we use the jets to mitigate backgrounds
- ▶ In this case, the jets can be resolved distinctly

Forward jets are challenging

- \blacktriangleright "Forward" typically refers to jets outside of the tracker's acceptance
- ▶ Rely entirely on calorimeters
- ▶ Energy resolution and trigger efficiency degrade in this region

Forward jets are challenging

- ▶ "Forward" typically refers to jets outside of the tracker's acceptance
- ▶ Rely entirely on calorimeters
- ▶ Energy resolution and trigger efficiency degrade in this region
- \blacktriangleright Characterize events using quality within tracker acceptance

V+jet estimation

CMS

- ► Need to precisely estimate EW+QCD components of V+jets
- Prediction is made to NLO in QCD and EW
- ► As with mono-top, correlate Z and W production

Uncertainty	Size
W/Z QCD	15%
W/Z EW	15%
Trigger	2%
Lepton ID	2-3%

Validation of \boldsymbol{R}

- ▶ How do we know our prediction and uncertainties make sense?
- Cannot check in data whether we correctly predict $R = \frac{Z \rightarrow \nu \nu}{W \rightarrow \ell \nu}$
- ▶ However, we can check:

$$\frac{Z \to \ell \ell}{W \to \ell \nu} \approx \frac{Z \to \nu \nu}{W \to \ell \nu}$$

Validation of \boldsymbol{R}

- ▶ How do we know our prediction and uncertainties make sense?
- Cannot check in data whether we correctly predict $R = \frac{Z \rightarrow \nu \nu}{W \rightarrow \ell \nu}$
- \blacktriangleright However, we can check:

S. Narayanan (MIT)

Results

- ► Combine with other production modes to directly constrain $\mathcal{B}(H \to \text{inv})$
- ► VBF drives the combination

S. Narayanan (MIT)

 $\rm DM+jets$

Comparison of LHC and direct detection constraints

- ▶ LHC constraints strongest at low DM mass
- ▶ Constraints depend strongly on choice of model

S. Narayanan (MIT)

Theoretical prediction of V+jets

Uncertainty	Size	Impact on sensitivity
W/Z EW	15%	50%
W/Z QCD	15%	25%
Trigger	2%	20%
Lepton ID	2-3%	15%

- Theoretical uncertainties dominate VBF (and most mono-X searches)
- ▶ Inclusive predictions were dramatically improved in 2016
 - $\blacktriangleright \ 15\% \to 5\%$
 - \blacktriangleright [arXiv:1705.04664]
- \blacktriangleright Strong relationship with theory community on this effort
- ▶ Expect VBF predictions at similar level by Run 3

S. Narayanan (MIT)

DM+jets

Conclusions

Mono-top

- ▶ Jet substructure is critical
 - Resolved case not feasible in Run 2
 - ECF-based tagger came out of interactions with theory community
- Strong constraints on flavor-changing DM models
 - ► Search designed to be model independent ⇒ further re-interpretation
- ► ECFs and other substructure tools not limited to mono-top
 - ► Mono-Higgs
 - ▶ Visible mediator searches
 - $\blacktriangleright\,$ SM, Higgs, etc.

S. Narayanan (MIT)

Conclusions

Mono-top

- ► Jet substructure is critical
 - \blacktriangleright Resolved case not feasible in Run 2
 - ► ECF-based tagger came out of interactions with theory community
- ► Strong constraints on flavor-changing DM models
 - ► Search designed to be model independent \Rightarrow further re-interpretation
- ▶ ECFs and other substructure tools not limited to mono-top
 - ► Mono-Higgs
 - ► Visible mediator searches
 - ► SM, Higgs, etc.

VBF $H \rightarrow$ invisible

- ► Verv different set of jet challenges
 - ► Difficulty in energy measurement, triggering
 - ► Simpler reconstruction, but huge combinatoric background
- ▶ Kev here is accurate measurement of SM backgrounds
 - EW and QCD components (at LO)
- ► Reducing theoretical uncertainties
 - Better prediction of W and Z spectra
 - Understanding correlation between Wand Z

S. Naravanan (MIT)

BACKUP

S. Narayanan (MIT)

Some substructure observables

CMS

- ▶ N-subjettiness [Thaler *et al*, arXiv:1011.2268]
 - ▶ $\tau_{\mathbf{N}}$: compatibility of jet with **N**-axis hypothesis
- ▶ HEPTopTagger [Anders *et al*, arXiv:1312.1504]
 - Reconstruct W and t decay products inside jet
- ► Energy correlation functions [Moult *et al*, arXiv:1609.07473]
 - $e(\alpha, \mathbf{N}, a)$ sensitive to **N**-point correlations in the jet

Comparison to data

Substructure relies on physics that may not be well-simulated by hadronization models. Comparison to data shows that the BDT classifier is well-described.

How does mono-top compare?

- CMS
- Sensitivity of mono-top and mono-jet similar (with same assumptions on g_{χ}, g_q, m_V)
- ▶ If FCNC is embedded in DM model, sensitivity similar to mono-jet
 - ▶ No DD limits for $3^{\rm rd}$ gen FCNC because $\sigma_{\rm DM,N}$ re-interpretation is tricky

Re-interpretation using simplified likelihoods

- ▶ Searches are designed in a semi-model-independent way
- ▶ Need a way for new models to be constrained using these results
- ▶ We cannot release all of our data and expect theory community to redo analysis
- ▶ Even a complete likelihood is tricky 100s of parameters and constraints

Re-interpretation using simplified likelihoods

CMS

- ▶ Searches are designed in a semi-model-independent way
- ▶ Need a way for new models to be constrained using these results
- ▶ We cannot release all of our data and expect theory community to redo analysis
- ▶ Even a complete likelihood is tricky 100s of parameters and constraints

Solution: simplified likelihood

S. Narayanan (MIT)

- \blacktriangleright Run 2 has seen a significant improvement in mono-**X** searches at CMS
 - ► Increased luminosity and cross-sections
 - \blacktriangleright New techniques to estimate backgrounds and identify ${\bf X}$

- \blacktriangleright Run 2 has seen a significant improvement in mono-**X** searches at CMS
 - ► Increased luminosity and cross-sections
 - \blacktriangleright New techniques to estimate backgrounds and identify ${\bf X}$
- ▶ What are the key challenges for the remainder of Run 2 and beyond?

- ▶ Run 2 has seen a significant improvement in mono-X searches at CMS
 - ► Increased luminosity and cross-sections
 - \blacktriangleright New techniques to estimate backgrounds and identify ${\bf X}$
- ▶ What are the key challenges for the remainder of Run 2 and beyond?
- ▶ Triggering becomes harder as instantaneous luminosity and pile-up increase
 - ► Mono-X signature has relatively few trigger handles
 - $p_{\rm T}^{\rm miss}$ depends on online jet resolution

- ▶ Run 2 has seen a significant improvement in mono-X searches at CMS
 - ► Increased luminosity and cross-sections
 - \blacktriangleright New techniques to estimate backgrounds and identify ${\bf X}$
- ▶ What are the key challenges for the remainder of Run 2 and beyond?
- ▶ Triggering becomes harder as instantaneous luminosity and pile-up increase
 - ► Mono-X signature has relatively few trigger handles
 - $p_{\rm T}^{\rm miss}$ depends on online jet resolution
- ▶ Many searches rely on accurate theoretical predictions of backgrounds
 - ▶ $\mathcal{O}(1\%)$ uncertainties on V/Z ratios key for mono-jet sensitivity

- ▶ Run 2 has seen a significant improvement in mono-X searches at CMS
 - ► Increased luminosity and cross-sections
 - \blacktriangleright New techniques to estimate backgrounds and identify ${\bf X}$
- ▶ What are the key challenges for the remainder of Run 2 and beyond?
- ▶ Triggering becomes harder as instantaneous luminosity and pile-up increase
 - ► Mono-X signature has relatively few trigger handles
 - $p_{\rm T}^{\rm miss}$ depends on online jet resolution
- ▶ Many searches rely on accurate theoretical predictions of backgrounds
 - $\mathcal{O}(1\%)$ uncertainties on V/Z ratios key for mono-jet sensitivity
 - \blacktriangleright Uncertainties are larger for other V+jet topologies
 - Among limiting factors for $VBF+p_T^{miss}$, mono-top, mono-Higgs

- \blacktriangleright Run 2 has seen a significant improvement in mono-**X** searches at CMS
 - ► Increased luminosity and cross-sections
 - \blacktriangleright New techniques to estimate backgrounds and identify ${\bf X}$
- ▶ What are the key challenges for the remainder of Run 2 and beyond?
- ▶ Triggering becomes harder as instantaneous luminosity and pile-up increase
 - ► Mono-X signature has relatively few trigger handles
 - $p_{\rm T}^{\rm miss}$ depends on online jet resolution
- ▶ Many searches rely on accurate theoretical predictions of backgrounds
 - $\mathcal{O}(1\%)$ uncertainties on V/Z ratios key for mono-jet sensitivity
 - \blacktriangleright Uncertainties are larger for other V+jet topologies
 - Among limiting factors for $VBF+p_T^{miss}$, mono-top, mono-Higgs
 - VV ratios \Rightarrow mono- $Z(\ell\ell)$ and mono- γ
 - $t\bar{t} V$ prediction \Rightarrow dileptonic $t\bar{t}$ +DM

Generalized ECFs

• Extension of original ECFs to allow for different angular orders:

$$e(o, N, \beta) \equiv {}_{o}e_{N}^{\beta} = \sum_{i_{1} < i_{2} < \dots < i_{N} \in J} \left[\prod_{1 \le k \le j} z_{i_{k}}\right] \times \min\left\{\prod_{k,l \in \text{pairs}\{i_{1},\dots,i_{N}\}}^{o} \Delta R_{kl}^{\beta}\right\}$$

► e.g.

$${}_{2}e_{3}^{1} = \sum_{a < b < c \in J} z_{a} z_{b} z_{c} \times \min\{\Delta R_{ab} \Delta R_{ac}, \Delta R_{ab} \Delta R_{bc}, \Delta R_{bc} \Delta R_{ac}\}$$

- ► Summary of parameters:
 - ▶ N = order of the correlation function. An N-pronged jet should have $e_N \gg e_M$, for N < M
 - o = order of the angular factor.
 - ▶ β = angular power

Mono-Higgs

DM via Higgs-BSM couplings

► 5 additional Higgs bosons, including heavy (A) and light (a) pseudoscalars

- ► Quantize baryon number with gauge field Z'
- ► "SM" h mixes with baryonic h_B, providing effective coupling to Z'

S. Narayanan (MIT)

DM+jets

Identifying $H \to b \bar{b}$

- \blacktriangleright As with mono-top, we focus on highly-boosted decays
- ▶ Two-prong substructure tagging is done using ECFs
- ▶ Identifying flavor content of $H \to b\bar{b}$ is more important
 - ▶ Two *B* mesons \Rightarrow difficult to fake signature
- \blacktriangleright Subjet tagging becomes less efficient at high $p_{\rm T}$

▶ Use "double-b" tagger to see if entire jet is consistent with 2 bs [CMS-BTV-15-002]

Background estimation

• As with mono-top, use visible $Z/W/t\bar{t}$ processes to constrain invisible analogs

Background estimation

- ▶ As with mono-top, use visible $Z/W/t\bar{t}$ processes to constrain invisible analogs
- ▶ Control data includes events that both pass and fail the double-b selection
- ▶ Use this ratio to correct the efficiency of backgrounds in the signal region

Constraints on 2HDM+a

- ▶ 2HDM+a is a rich model \Rightarrow many free parameters
- ▶ Some couplings constrained by unitarity and perturbativity
- Assume that heavy Higgses all have same mass m_A

Constraints on 2HDM+a

- ▶ 2HDM+a is a rich model \Rightarrow many free parameters
- ▶ Some couplings constrained by unitarity and perturbativity
- ▶ Assume that heavy Higgses all have same mass m_A

Constraints on baryonic Z'

- Only free parameters are masses $m_{Z'}$, m_{χ} and couplings g_q , g_{χ}
- Can re-cast constraints as a function of $\sigma_{\rm DM-N}$ for comparison to direct detection

