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Dark matter at the LHC

I Existence of dark matter strongly
suggested by astrophysical observations

I Galaxy rotation curves
I Gravitational lensing
I Bullet Cluster
I . . .

I Most evidence relies on gravitational
effects of DM

I Can we find other evidence for
interaction between SM and DM?
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Seeing the invisible

I DM candidates would couple weakly to collider detectors

I Not much point in producing DM if we can’t see it!

I The solution: searches for “mono-X”
I DM produced in association with one or more SM particles (X)

p p

X

invisible
transverse 
momentum 
imbalance

I X creates a transverse momentum
imbalance (pmiss

T )

I Large pmiss
T + conservation of

momentum ⇒ invisible particles!

I In certain cases, can trigger on X
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pmiss
T at the LHC

I CMS records proton collisions
from the LHC

I Today:
√
s = 13 TeV results

I pp events are messy, so replace:

p p

X

invisible
transverse 
momentum 
imbalance

I with:

~pmiss
T = −

 ∑
i∈particles

~pi


T
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Compact Muon Solenoid

All particles in sum ⇒
all subdetectors help measure pmiss

T !

I Solenoidal magnet
I 3.8 T B field

I Silicon tracker
I Charged particles’ ~p
I Track vertices

I Calorimeters
I EM and hadronic
I Good energy resolution
I Large coverage

I Muon chambers
I ID muons
I Help measure ~p
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A broad spectrum of DM models and X

Spin-1
mediated

Spin-0
mediated

Fermion
portal DM

Non-
thermal DM

ADD 2HDM
Baryonic

Z ′

X=q, g
qq′

V (qq̄′)
γ

Z(`+`−)
tt̄

b/bb̄
t

H(bb̄)

All signatures characterized by high pmiss
T , but choice of X necessitates different

reconstruction and background estimation strategies
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This talk: focus on DM+jets
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Mono-Top
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Hallmarks of top quark+pmiss
T

I Let’s forget any specific DM model

I This final state must violate flavor conservation
I SM FC processes will have a b quark in the final state

(up to CKM suppression)

I Excess mono-top production ⇒ flavor-changing BSM

I SM process is tiny: 0.14 pb

W

b

Z

g

u

b̄

t

ν̄

ν

d

u

FCNC

g

u

t

BSM

BSM

φ

s̄

d̄

t

BSM
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Anatomy of a mono-top event

Hadronic decay ⇒ larger BR, no pmiss
T

  

W

t

qq

b

invisible

I Signal events generally more energetic than
SM events

I Want to increase S/B? Look for very
energetic top quarks!

I Separation between jets: ∆R ∼ 2mt/pT
I pT > 250 GeV ⇒ jets (R = 0.4) overlap
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Anatomy of a mono-top event
Bare quarks hadronize into jets

  

W

t

qq

b

invisible

I Bare quarks are not color singlets

I Color confinement ⇒ production of color
singlets (hadrons)

I Hadrons collimated in direction of parton

I “Jets” are reconstructed using iterative
algorithms at LHC

I Signal events generally more energetic than
SM events

I Want to increase S/B? Look for very
energetic top quarks!

I Separation between jets: ∆R ∼ 2mt/pT
I pT > 250 GeV ⇒ jets (R = 0.4) overlap
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Anatomy of a mono-top event
Decay products collimate

  

W

t

q

q

b

invisible

ΔR

I Signal events generally more energetic than
SM events

I Want to increase S/B? Look for very
energetic top quarks!

I Separation between jets: ∆R ∼ 2mt/pT
I pT > 250 GeV ⇒ jets (R = 0.4) overlap
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Reconstruction of top quark

I Three R = 0.4 jets → single R = 1.5 jet

I Circular jets → oddly-shaped jets
I Jet is the sum of 3 jets
I Anti-kT → C/A

  

W

t

q

q

b

ΔR

I These are big jets
I R = 1.5 can contain up to half the

detector

I Lots of extra radiation in jet
I PU, ISR, UE/MPI

I Combinatorial fakes (q/g)

J. Phys.: Conf. Ser. 645 012008
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Jet substructure

I Top quark → 3q ⇒ top jet has 3 “prongs”: regions of correlated radiation

  

W

t

q

q

b

  

q/g

I Substructure observables are sensitive to such features
I N -subjettiness, subjet algorithms, ECFs,. . .
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Energy correlation functions

ECFs are N-point distance-weighted correlation functions among particles of the jet

e(a,N, α) ∼
∑

N particles ∈J

 ∏
p∈particles

Ep
EJ



× min


a∏

p,q∈particles
θ(p, q)


α

sets of N particles

energy fractions opening angle

[arXiv:1609.07473]
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ECF behavior

e(a,N, α) ∼
∑

N particles ∈J

 ∏
p∈particles

Ep
EJ

×min


a∏

p,q∈particles
θ(p, q)


α

I Top jet: N = 3 correlations are strong, N = 4 are weak

I q/g jets: N = 3 and N = 4 are both weak

I e(N = 4)/e(N = 3)

[arXiv:1609.07473]
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Space of ECF ratios

I Can extend argument to infinitely large ratio space

e(a,N, α)

e(b,M, β)x
, where M ≤ N and x =

aα

bβ

I Turns out many correlation function ratios can separate signal and background
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Building a discriminator

I Large number of substructure
observables to choose from

I Many are highly correlated or not useful

I Use boosted decision trees to prune
space of observables and extract useful
information

εbkg(εsig = 0.5)
τ32 6.9%
Combined BDT 4.7%

Signal efficiency
1

B
ac

kg
ro

un
d 

ac
ce

pt
an

ce

2−10

1−10

1

Combined BDT

50 ECF

11 ECF

rec+fSD
32τ

32τGroomed 

CMSPreliminary

 < 210 GeVSD110 < m
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Selecting mono-top events

  

W

t

q

q

b

invisible

ΔR

I pmiss
T > 250 GeV (trigger threshold)

I CA15 jet, pT > 250 GeV
I Selected by BDT

I Mass consistent with mt
I Signature of B meson decay inside jet

I Lab frame cτ ∼ O(mm)
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SM backgrounds

Z → νν (30%)

  

q/g

Z

ν

ν

W → (`)ν (15%)

  

q/g

W

ν

l

t quark pair (50%)

  

W

t

q
q

b

t

W

b ν

l

Note that pmiss
T is the transverse momentum of the vector boson

S. Narayanan (MIT) DM+jets 2018/07/19 18 / 45



SM backgrounds

Z → νν (30%)

  

q/g

Z

ν

ν

W → (`)ν (15%)

  

q/g

W

ν

l

t quark pair (50%)

  

W

t

q
q

b

t

W

b ν

l

Note that pmiss
T is the transverse momentum of the vector boson

S. Narayanan (MIT) DM+jets 2018/07/19 18 / 45



SM backgrounds

Z → νν (30%)

  

q/g

Z

ν

ν

W → (`)ν (15%)

  

q/g

W

ν

l

t quark pair (50%)

  

W

t

q
q

b

t

W

b ν

l

Note that pmiss
T is the transverse momentum of the vector boson

S. Narayanan (MIT) DM+jets 2018/07/19 18 / 45



SM backgrounds

Z → νν (30%)

  

q/g

Z

ν

ν

W → (`)ν (15%)

  

q/g

W

ν

l

t quark pair (50%)

  

W

t

q
q

b

t

W

b ν

l

Note that pmiss
T is the transverse momentum of the vector boson

S. Narayanan (MIT) DM+jets 2018/07/19 18 / 45



Background estimation

Z → νν

  

q/g

Z

ν

ν Ideally:

pmiss
T = pZT = p``T

In practice:

pmiss
T ≈ pZT ≈ pmiss

T (no `)

Z → ``

  

q/g

Z

l

l

Hadronic recoil ≡ momentum imbalance if we pretend `± are invisible.
Only syst. uncertainty on this extrapolation comes from ` ID (∼ 1−3%)
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B(Z → νν) > B(Z → ``)
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σ(γ)� σ(W ) > σ(Z)

Use production of γ and W to estimate production of Z
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Fitting ratios

I Free parameters in fit are:

µZ→ννi - number of Z events in SR

RX
i (θ) - ratio of events in SR and CR X

I Each extrapolation ⇒ an additional R

L(µZ→νν ;θθθ) =
∏
i∈bins

Poisson
(
dsignali

∣∣∣Bsignal
i (θθθ) + (1 + fi(θθθ))µ

Z→νν
i + µSi(θθθ)

)
×
∏
i∈bins

Poisson

(
d``i

∣∣∣B``i (θθθ) +
µZ→ννi

R``
i (θθθ)

)
× · · ·

I Physics challenge boils down to predicting and assigning uncertainty on R
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Extrapolation uncertainties

tt̄→ bµν+jets
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Background estimation summary
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Z → ``
`` CR
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Background estimation summary

Z → νν
SR

Z → ``
`` CR

γ
γ CR

W → `ν
SR

W → `ν
` CR

tt̄
SR

tt̄
` CR

tt̄
b` CR

  

q/g

Z

l

l

  

q/g

W

ν

l

  

γ

q/g

  

W

t

q
q

b

t

W

b ν

l

Largest uncertainties:

- ` and b ID

- γ/Z and W/Z prediction

S. Narayanan (MIT) DM+jets 2018/07/19 26 / 45



Unblinding the data
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I Too many regions to show all here

I SM processes are able to describe data quite well in all regions, including the SRs

I No observation of an excess
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No observation? Set limits

Benchmark models probe different mono-top kinematics.

Resonant scalar

I pT of top quark increases with mφ

I Therefore, efficiency of signal selection
improves at high mφ

φ

s̄

d̄

t

BSM

FCNC

I Falling pmiss
T spectra ⇒ worse signal eff.

I Interesting parameters to constrain are
mV and couplings gχ, gq

u
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No observation? Set limits

Benchmark models probe different mono-top kinematics.

Resonant scalar
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I Therefore, efficiency of signal selection
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Another DM+substructure search: mono-Higgs(bb)

I Backgrounds and estimation technique very
similar to mono-top

I Sensitive to extended Higgs sectors (2HDM+a,
baryonic Z ′,. . . )

I Replace 3-prong/1-b with 2-prong/2-b
large-radius jet
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Detour: ML for substructure

I Top-tagging using QCD-motivated observables works very well

I Are we reaching a “maximum” performance threshold?

I One approach is to brute-force the problem using deep learning

I Factorize the question: physics effects vs. detector effects

I Following studies are done using hadron-level simulation
I Madgraph5 at LO for hard scattering
I Pythia8 for hadronization
I No detector simulation

I Training is done on a desktop computer
I NVIDIA GTX 1080 GPU
I Keras1 with tensorflow2 backend

1https://github.com/keras-team/keras
2https://github.com/tensorflow/tensorflow
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Observables

I For each particle in the jet, 7 features:
I pµ

I ∆R(particle,jet)
I Soft drop survival
I Particle type (e±, µ±, γ, charged hadron±, neutral hadron)

I Rotate the jet so:
I Jet axis coincides with z-axis
I Hardest particle away from jet axis lies in x-z plane
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Network architectures

  

Jet 
(N particles, M features)

...

N particles

M
 fe

at
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Linear combinations

Fully connected

...

Q combinations

M
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Prediction

- Fully connected: brute
force approach

- Recurrent NN: read the
jet as a “sentence”, where
a particle is a “word”

- 1D convolutions: allows
some invariance to
incorrect ordering
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DNN performance

I Compare fully-connected network to
“shallow” network using ECFs

I O(106) parameters

I Positive: performant classifier without
thinking about physics

I Negative: that’s it?

I Dramatic improvement from giving
structure to the network

I Adding more information (4→ 7) or
more particles (50→ 100) helps

I C-LSTMs have O(105) parameters
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Next steps/WIP

I Quantifying how realistic this improvement is
I What are we learning that QCD observables don’t capture?
I Is it IRC unsafe things?
I How does detector smearing hurt?

I Hint: it’s painful

I Removing correlation with various nuisances
I Kinematics of jet: mass, pT
I Pile-up
I QCD uncertainties

I Again, IRC unsafety plays a role

I There is a lot of promise in these approaches!
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VBF H → invisible
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Invisible Higgs

I DM fermion could be given mass through Higgs mechanism

I If 2mχ < mH , should observe H → χχ̄

I Production mode ⇒ mono-X channels
I gg → H + ISR ⇒ mono-jet
I V H ⇒ mono-V (qq′) and mono-Z(``)
I VBF ⇒ VBF+H →inv
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VBF production of bosons

Characterized by:

I Two forward jets

I Large pHT
Can replace H with Z or W

I Irreducible background
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Forward jets are important

I As with mono-top and mono-Higgs, we use the jets to mitigate backgrounds

I In this case, the jets can be resolved distinctly
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Forward jets are challenging

I “Forward” typically refers to jets outside of the tracker’s acceptance

I Rely entirely on calorimeters

I Energy resolution and trigger efficiency degrade in this region
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Forward jets are challenging

I “Forward” typically refers to jets outside of the tracker’s acceptance

I Rely entirely on calorimeters

I Energy resolution and trigger efficiency degrade in this region

I Characterize events using quality within tracker acceptance
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V+jet estimation

I Need to precisely estimate EW+QCD
components of V+jets

I Prediction is made to NLO in QCD and
EW

I As with mono-top, correlate Z and W
production
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Validation of R
I How do we know our prediction and uncertainties make sense?
I Cannot check in data whether we correctly predict R = Z→νν

W→`ν
I However, we can check:
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Results
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I Combine with other production modes
to directly constrain B(H → inv)

I VBF drives the combination
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Comparison of LHC and direct detection constraints

H → inv
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Mono-Higgs Mono-jet

I LHC constraints strongest at low DM mass

I Constraints depend strongly on choice of model
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Theoretical prediction of V+jets

Uncertainty Size Impact on sensitivity

W/Z EW 15% 50%
W/Z QCD 15% 25%

Trigger 2% 20%
Lepton ID 2-3% 15%

I Theoretical uncertainties dominate VBF (and most
mono-X searches)

I Inclusive predictions were dramatically improved in 2016
I 15%→ 5%
I [arXiv:1705.04664]

I Strong relationship with theory community on this effort

I Expect VBF predictions at similar level by Run 3
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Conclusions

Mono-top

I Jet substructure is critical
I Resolved case not feasible in Run 2
I ECF-based tagger came out of

interactions with theory community

I Strong constraints on flavor-changing
DM models

I Search designed to be model
independent ⇒ further
re-interpretation

I ECFs and other substructure tools not
limited to mono-top

I Mono-Higgs
I Visible mediator searches
I SM, Higgs, etc.

VBF H → invisible

I Very different set of jet challenges
I Difficulty in energy measurement,

triggering
I Simpler reconstruction, but huge

combinatoric background

I Key here is accurate measurement of
SM backgrounds

I EW and QCD components (at LO)

I Reducing theoretical uncertainties
I Better prediction of W and Z spectra
I Understanding correlation between W

and Z
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SM backgrounds

I EW and QCD components (at LO)

I Reducing theoretical uncertainties
I Better prediction of W and Z spectra
I Understanding correlation between W

and Z
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Some substructure observables

I N -subjettiness [Thaler et al, arXiv:1011.2268]
I τN: compatibility of jet with N-axis hypothesis

I HEPTopTagger [Anders et al, arXiv:1312.1504]
I Reconstruct W and t decay products inside jet

I Energy correlation functions [Moult et al, arXiv:1609.07473]
I e(α,N, a) sensitive to N-point correlations in the jet
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Comparison to data

Substructure relies on physics that may not be well-simulated by hadronization models.
Comparison to data shows that the BDT classifier is well-described.
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How does mono-top compare?

I Sensitivity of mono-top and mono-jet similar (with same assumptions on gχ, gq,mV )
I If FCNC is embedded in DM model, sensitivity similar to mono-jet

I No DD limits for 3rd gen FCNC because σDM,N re-interpretation is tricky
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Re-interpretation using simplified likelihoods

I Searches are designed in a semi-model-independent way

I Need a way for new models to be constrained using these results

I We cannot release all of our data and expect theory community to redo analysis

I Even a complete likelihood is tricky - 100s of parameters and constraints

Solution: simplified likelihood
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Summary and outlook

I Run 2 has seen a significant improvement in mono-X searches at CMS
I Increased luminosity and cross-sections
I New techniques to estimate backgrounds and identify X

I What are the key challenges for the remainder of Run 2 and beyond?

I Triggering becomes harder as instantaneous luminosity and pile-up increase
I Mono-X signature has relatively few trigger handles
I pmiss

T depends on online jet resolution

I Many searches rely on accurate theoretical predictions of backgrounds
I O(1%) uncertainties on V/Z ratios key for mono-jet sensitivity
I Uncertainties are larger for other V+jet topologies

I Among limiting factors for VBF+pmiss
T , mono-top, mono-Higgs

I V V ratios ⇒ mono-Z(``) and mono-γ
I tt̄ V prediction ⇒ dileptonic tt̄ +DM
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Generalized ECFs

I Extension of original ECFs to allow for different angular orders:

e(o,N, β) ≡ oe
β
N =

∑
i1<i2<···<iN∈J

 ∏
1≤k≤j

zik

×min


o∏

k,l∈pairs{i1,...,iN}

∆Rβkl


I e.g.

2e
1
3 =

∑
a<b<c∈J

zazbzc ×min{∆Rab∆Rac,∆Rab∆Rbc,∆Rbc∆Rac}

I Summary of parameters:
I N = order of the correlation function. An N -pronged jet should have eN � eM , for
N < M

I o = order of the angular factor.
I β = angular power
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Mono-Higgs
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DM via Higgs-BSM couplings

2HDM+a

g

g

h

�

�

t

t̄

t
A

a

I 5 additional Higgs bosons, including
heavy (A) and light (a) pseudoscalars

Baryonic Z ′

q

q̄ h

�

�

Z0

Z0

I Quantize baryon number with gauge
field Z ′

I “SM” h mixes with baryonic hB,
providing effective coupling to Z ′
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Identifying H → bb̄

I As with mono-top, we focus on highly-boosted decays

I Two-prong substructure tagging is done using ECFs

I Identifying flavor content of H → bb̄ is more important
I Two B mesons ⇒ difficult to fake signature

I Subjet tagging becomes less efficient at high pT

subjets fatjet double-b

τ-axis1

τ-axis2

I Use “double-b” tagger to see if entire jet is consistent with 2 bs [CMS-BTV-15-002]
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Background estimation

I As with mono-top, use visible Z/W/tt̄ processes to constrain invisible analogs

I Control data includes events that both pass and fail the double-b selection

I Use this ratio to correct the efficiency of backgrounds in the signal region
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Constraints on 2HDM+a

I 2HDM+a is a rich model ⇒ many free parameters

I Some couplings constrained by unitarity and perturbativity

I Assume that heavy Higgses all have same mass mA
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Constraints on baryonic Z ′

I Only free parameters are masses mZ′ , mχ and couplings gq, gχ

I Can re-cast constraints as a function of σDM−N for comparison to direct detection
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