
https://root.cern

ROOT
Data Analysis Framework

Interpreter and
Infrastructure Feedback

ROOT Workshop 2018
Sarajevo, Bosnia and

Herzegovina

https://root.cern

Interpreter-Infrastructure Feedback Session, ROOT Workshop 2018

Content

● Cling interpreter
● Infrastructure
● Windows platform
● Teaching

Interpreter-Infrastructure Feedback Session, ROOT Workshop 2018

Interpreter

● Cling and pyROOT appreciated for scripting capabilities
● Redeclare variable/function instead of crashing

○ https://github.com/root-project/cling/issues/259
● root --nostrict

https://github.com/root-project/cling/issues/259

Interpreter-Infrastructure Feedback Session, ROOT Workshop 2018

ROOT installation

● No root access to machine: Conda, Spack, Docker
● Modularity

○ This is not new, CERN experiments has already requested multiple time
such feature: a more modularized way to install ROOT or individual
parts of ROOT

○ Decouple Cling from I/O, even ROOT without Cling?
■ Basically not to have so many dependencies from the system

(?)
■ Functionality-wise, sometimes having more things is not

beneficial
● Production systems, security (“no compilers here”)

Interpreter-Infrastructure Feedback Session, ROOT Workshop 2018

Minimal ROOT ?

● Difficult and cumberstone to build and install ROOT
when they only need a subset of it

● Minimal ROOT: can we motivate this?
○ What is minimal root?

■ What depends on what?
○ Invest ~1 year of work? Is it that important?
○ Why are people so focused on getting minimal parts of ROOT?

■ What’s the benefit of that?
■ (Answer) Kyle - Fermilab: That’s the right question, but

because of other people does it, maybe that’s is what they
are expecting so from ROOT.

Interpreter-Infrastructure Feedback Session, ROOT Workshop 2018

ROOT build / dev install

● Concerns about CMake modernisation
○ Some planned features might not be (easily?) implemented with CMake
○ Are we willing to contribute to CMake main repository?
○ CMake responsive to bug report. Equally responsive for features

requests?
● Building ROOT libraries without dictionary generation?
● Depending on / linking to ROOT

○ Request for clear guide (e.g. How to build a minimal stand-alone app)
○ Make find_package for libraries

● Frustration over building large software (build times?)

Interpreter-Infrastructure Feedback Session, ROOT Workshop 2018

ROOT package manager

● Unclear what is scope: what does it do, what not, why
not industry solution
○ “Lazy building”
○ Does not want to interfere with the Distribution Package manager
○ Provide flexibility to the developers building custom parts of ROOT, how

to decouple different functionalities in modules, and apply lazy building
of those

Interpreter-Infrastructure Feedback Session, ROOT Workshop 2018

Development tools

● Clang-tidy linter to find bugs (plus bugprone constructs) / improve
style
○ We have clang-tidy in our CI.
○ Do we interact with it enough? (Now it’s always green.)
○ Should we go through components 1 at a time?
○ Extend with ROOT style rules?

● Integration with IDE

Interpreter-Infrastructure Feedback Session, ROOT Workshop 2018

Windows

● General feature support issues
○ E.g. multi-process (fork) doesn’t work

● Please also add XRootD
● Add DaviX

Interpreter-Infrastructure Feedback Session, ROOT Workshop 2018

PyROOT

● People were really surprised with some of the forthcoming features
● Main risk:

○ Many independent projects popping up to implement individual parts of ROOT in
python.

○ Are pythonizations a better approach?
● LHCb has been developing pythonizations since years

○ However they appreciate the new way to add them (with decorators), specially
the lazy loading at runtime

Interpreter-Infrastructure Feedback Session, ROOT Workshop 2018

PyROOT II

● Ownership / memory management
○ Mentioned on previous feedback sessions

● Interoperability with numpy/ Python data science ecosystem
● ROOT builds for both Python2 and Python3

○ Simultaneous support for both versions

Interpreter-Infrastructure Feedback Session, ROOT Workshop 2018

Documentation

● More guidelines/tutorials:
○ Macros
○ General C++
○ Modern C++
○ Coding guidelines, software design tips
○ Introduction for good/effective ROOT practice. How to start.
○ Jupyter notebooks / interactive tutorials (as shown in the jupyter

presentation)
● Mechanism allowing to go to the same class doc for different ROOT

versions
● Advertise how to depend on root in your project.
● Clean up doc (updated things).

Interpreter-Infrastructure Feedback Session, ROOT Workshop 2018

Teaching

Should we invest more on teaching ROOT and C++ ?
Would be appreciated ?

● Stronger community to solve problems with ROOT (similar to Stackoverflow)
○ The goal is to cover the lack of ROOT experts in some areas (as the LHCb survey

showed)
● How to lower the hurdle for newbies that just started and come with

“silly”/obvious questions ?
● More learning resources

○ Procedures for problems already solved
○ Register more tutorials (more? Or improve the access to them?)

● Does ROOT provide tools to do task X in a better way?
○ Better understanding of the available methods (?)

