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STARS - AMEBEA - LIQUID UNDER THERMAL GRADIENT

o Single to multi-armed spirals
o Forces that govern the motion of the indivdual stars or amebea are very different !!
o Presently no one can compute millions/billions of 3D paths of interacting stars or

amebea, yet

o on a large scale the millions of individuals behave as if their mass were continuously
distributed
o forming similar large scale structures

o Mathematical model that is able to describe these large scale patterns will have to
be able to reduce the description to the essential most dominant forces creating
these structures and their dynamics

o Power of Applied Mathematics is to be able model these (physically unrelated)
structures AND analyse them with common mathematical tools

o Derivation of a averaged continuum model, analysis, numerical solution

©

Important in modeling: Know the errors

o Dimensional Analysis and Scaling
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o 1945 first atomic explosion in New Mexico: classified®
o 1947 movie of explosion appeared
0 1950 G. | Taylor (University of Cambridge) published article on

energy (still classified!!!) of explosion.

o What effects might be expected during nuclear fission?
To answer this question:

Calculate motion and pressure of ambient gas after explosion

What is known ?

o After short, intense initial period: Shock appears
o Governing equations inside shock wave
° viscous effects are negligible (at this early stage), spherical symmtry

!Barenblatt, "Scaling" (2012)
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Conservation of mass Oep + %QE)T (priu) =0

. 1
Conservation of momentum ou + ulru + —0rp =0
P

Conservation of energy Oy <£> + ud, (ﬂ) -0
P pY

Boundary Conditions
ps(us — D) = —poD
ps(us — D)? 4 ps = po + poD?

7 ps | (us—D)? v po , D?
s(us — D = = —poD =
pa(u )(7—1,03+ 2 po —1p0Jr 2

Initial Conditions
p(r,0) = po(r), p(r,0) =po(r), u(r,0)=0 r>rg
p(r,0) = pi(r), ( 0) = pi(r), (7“ 0) =wui(r) r<ro

70
E:47r/ ( —&—7—
0 vy—1p:
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(i) Location of shock rs depends on: E, po,t, to, po,y
(i) Assume: energy is suddenly released in infinitely concentrated form

= point source i.e. ro K 75

Assume: pressure of moving gas ps > po = neglect terms with po at shock

Units [E] = gcm , [po] =
(i) & (n) = neglect 1o, po

L, [t] = s, [ro] = em, [po] = =2

cms?2

1/5
= S = (E—ﬁ) < dimension of length
I T

=% = F(S,po,t,v) dimensionless !

=- depends only on constant

1/5
= Taylor’'s Scaling Law rs = C(%) (Lﬁ)

PO

= %loglo rs = glog10 C+3 log10 ( ) +log,,t = E
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Scaling

10-51~ /ﬁ

$log, R
-

85 /l—/

7:5 ] ! 1 ]

—4-0 -30 -2:0 -1-0
logye &

Fieure 1. Logarithmic plot showing that R# is proportional to 2.
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Assumptions

A quantity u to be determined in terms of measurable quantities {w1, ..., wn }:
u = f(wi, ..., wn) (1)
{u, w1, ..., wn} involve m fundamental dimensions L1, ..., Lim

The dimension of a quantity z is a product of powers of the fundamental dimensions

[2] = LS1LS2 .. LS™  a; €R

Conclusions
(1) can be expressed in terms of dim'less quantities.
bli b11 o bln
b; = . dimension of w;, B = : . dimension of problem.
bmi bml e bmn

Number of dim’'less quantities is

k+1=n+1-r(B), where r(B) = rank of B.
Exactly k of these depend on {w1,...,wn}
Let z;, ¢ =1,...k be k = n — r(B) linearly independent solutions = of Bx = 0.

Let a be the dimension vector of u and y a solution of By = —a. Then (1) reduces to
m™=g(m,..., Tg), )
where
7 =uwl - wh and m; = wwl? - wp™?

are dim’less quantities
and (1) becomes u=w; 1wy Vg, .., ) 3)
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Homework !
o Let u = R radius of shock wave, with R = f(w1, ..., wa4)
and w1 = E, w2 = t, w3 = po, Wa = Po
o Using fundamental dimensions, obtain dimension matrix
2 0 -3 -1
B=|1 0 1 1

-2 1 0 =2
o Apply Buckingham-Pi: r(B)=3 = k=n-r(B)=4-3=1
Solution to Bx =0 is
1 =—2x1, wa=2%m4, w3=—3x4 where x4 arbitrary (e.g. w4 =1)
t6 1/5
= Dimensionless quantity: T = Po <—)
E2p}
e !
Solution of By = —a is v=z11| dimension of Risa = |0
0

0

Et2 1/5
= Dimensional Analysis: R= (H) g(m1)
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Phase separation: Cahn-Hilliard equation

02 0.4 086 08

14
- . [ol0) . of
Cahn-Hilliard equation i \Y <M V—5¢>

Total free energy: Ginzburg-Landau free energy

6,71 = [ F(609.T(0) + e Vo dx
Bulk free energy:

F=¢(1-9¢)+ksT(¢In¢+(1—-¢)In(l—¢))

Simplest free energy, combining bulk contribution
from a binary mixture and interfacial energy.

Mass conservation: % =-V-J
ot
J=—-MV-pu with Nz%
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Frl Ap in Q=Q,UQ_
p = F'(u)—Au
n:Vp = 0, n-Vu=0 on 090

o Solutions reach near phase equilibrium after O(1) time.
o Near phase equilibrium:

solution has developed an interface between precipitates Q4+, Q_ of width of O(e)

o approaching a sharp interfaces I'y, as € — 0
o Dynamics of the precipitates evolves on the slow time-scale 7 = et
ou
= e—=Apu
or

Analysis =  Matched Asymptotic Expansions
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Definitions
Let u(x;€) and v(x;e€) be functions defined in D C R™ and I : 0 < e < €9(x). Then
u(x;e) = O(v(x;€)), inD,as e€—0

if for each x € D there exists k(x) and and I such that |u| < k|v| for each € € I.

u(x;€) = o(v(x;¢€)), inD,as e€—0
if for each x € D and given § > 0, there exists I : 0 < € < e(x,9) s.t. |u] < dJv] for
all € € I and denote this by u < v.
An asymptotic sequence {¢.(€)}, n = 1,2, ... is a sequence such that
dn+1(€) = o(dn(€)) as € — 0.
The series Zgil dn(€)un(x) is called an asymptotic expansion of u w.r.t. {¢n(€)}
for e — 0, if foreach M =1,.... N

u(x;€) — Z On(un(x) =o(pnm), as €—0
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Example®: Consider erf(z) = o exp(—t?) dt

o exp(—t?) is analytic in the entire complex plane C so that its Taylor series

2 & (—1)ng?n ! 9 I . S ST
f(z) = 2 B Y (S A A R A
erf(e) = 2 nz:;) Cn+ ) = 35710 22 216 1320

converges with infinite radius of convergence.

o Accuracy: For an accuracy of 107°
upto x = 2 need 16 terms, upto z = 3 need 31 terms, upto z =5 need 75 terms

For round-off error 10™7: At = = 5 largest term is 6.6 - 105= WRONG answer!
o ALTERNATIVE: Integrate by parts

222 (222)2 (222)3

2 Cexp(=a®) (1 -3 1-3.5
erf(z) =1 f/ exp(— dt—l = (1 )

= series diverges for all x and radius of convergence is zero! BUT:
x = 2.5 need 3 terms for accuracy of 105, 2 = 3 need 2 terms for accuracy of 10~°

o This series is an asymptotic expansion!

2Jon Chapman, Univ. of Oxford
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A simple but instructive example:

ey’ +2y +2y=0 in 0<z<l exl
y(0)=0 y(1)=1

o As e — 0 order of ODE decreases = one BC can’t be satisfied
= singular perturbation problem

Region where ¢ = 0-problem does not have solution: Boundary layer

Where is the boundary layer (BL)?

Let BL be at x = xo: = =0+ €“T or

© 0 o

Inner (BL) variable
s 5T o5
€
o Assume zo = 0, define Y (Z;€) = y(x;¢€)
Inner (BL) problem
a2 dY dy

ﬁ+267‘1%+25’:0, 0<Z< oo, Y(O):O
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Matched asymptotic expansions

Outer expansion Assume solution of outer problem has asymptotic expansion
y(;€) = yo(@) + ey (w) + O(e?)

Note: iterative method
Leading order problem (O(1)):

Yo+yo=0 yo(1)=1

= yo(z) =exp(l — )

Inner expansion
Assume

Y(Z;€) = Yo(z) + €Y1 (T) + O(e‘s), d>~v, ~v>0
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Leading order problem:

1—2a£ d

e Yo+ hot)+2¢ “ pE (Yo + h.oot.)+2 (Yo + hot.)=0

Dominant balance =- leading order problem

1st and 3rd term balance and 2nd term is of smaller order as ¢ — 0
= 1-2a=0 = a=3

= 1st and 3rd are O(1) and 2nd of O(¢ /%) as e =0 4
1st and 2nd term balance and 3rd is smaller

= a=1 = 1st& 2nd are O(¢™') and 3rd O(1) /

d*Y, _dYy _
pED —&—2%—0 for 0<ZT <o
Yo(0) =0

= Yo(z) = A(1 — exp(—2%))
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Matched asymptotic expansions

Matching
o There exist a domain where inner and outer solutions approximate same function

= Overlap-Domain
= there exist an intermediate variable z,, such that

4 ©0005006000000006000000000
90000, 44900°°

Ty = UL such that e < n(e) < 1 p

-
overlap domain

02 04 06 08
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Kaplun’s Extension Theorem
Let e < n(e) < 1 such that z,, = z/n(e)
There exist an n1(€) such that for x,, fixed

li_% Youter (Tn) — yo(n(€) xy) = 0 for any n(e) that satisfies 11 (e) <K n(e) K 1.

There exist an n2(€) such that for x,, fixed

liII(l] Yinner (Tn) — Yo(en(e) xy) =0 for any n(e€) that satisfies € < n(e) < n2(e).
e—

Remark

Kaplun’s Hypothesis
The domain of validity of youter and Yinner overlap, i.e. m1 <K ma. In this overlap domain

the leading orders of Youter and Yinner agree.

Proofs: P. Lagerstrom, "Matched asymptotic expansions: ldeas and Techniques",
Spriner-Verlag, 1988.
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Matched asymptotic expansions

Matching
Let n(e) = ¢” with 0 < 8 < 1 so that ¢ < € < 1 and define the intermediate
variable
x
Ty = G_B
Then
Yinner = A [1 — exp (—2€1mfﬁ )] + h.ot. - A+e.st.+ h.ot. ase—0,x,fixed
and
Youter = €XP (1 — w"e'g) + h.ot. = exp(1l) + h.ot. ase — 0, x, fixed
= A=-exp(l).
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Uniformly valid (composite) expansion

To leading order the asymptotic solution valid in the whole domain:

Yye(z5€) = yo(x) + Yo (%) — matched part + h.o.t.

Matched part: yo(0).

= ye(m;e) = exp(l — x) — exp <1—2—) + h.o.t.

Next order problem

dy1 1
dx ty T2 da?”

o also needed to estimate validity of leading order result

o multiple BL, corner layers, transition layers, ...
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Sharp-interface

Outer problem

w(t,x;8) = uo(T,X) + eur (7, %) + e2ua(7,x) + O(?)
w(rxi8) = pio(T,%) +epa (7, X) + &2 (7, x) + O(?)

Leading order

0=Ap, = AF/(uo)

O(e)
Buo 1/
5 = Apr = A (F (uo)ul)
O(£?)
U Ay = A F" (uo)usz + 1F"'(u Yui — Au
or = AUz = o )U2 2 o)U1 o

o + boundary conditions on 92

o Boundary conditions on Ty, = matching to 'inner' problem near T'j,
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Inner problem
Define boundary layer with z ='inner’ variable

Parametrization of curve I';: Oe)
r(7,s) = (r1(7, s),r2(7, s)), s is arclength
x(7,8,2) =r(1,s) + ezv(r,s) ,:"
X = ($17m2) = (Ivy)’ T(Tv S) = (Tl(Tv S),Tz(T, S)) _______ -t 0
_ (O Ory v
v = (5200 5w )t = (e 52 )

Sharp-interface model

Ap; =0in Q" , m-Vu;y =00n 90, ;Lit:ﬁq(’T,’r‘), Apf =0inQf

Interfacial velocity
(v - Nui (7,7)]]
([u3]]

Sharp-interface model governs the long-time dynamics of the phase field model

VY= —



Multi-scale dynamics of patterns

AF 1600 Teflon DTS

Karin Jacobs and group:
Condensed Matter Physics, Saarland University
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Liquid dewetting: Driving force

E |
-0.15]
0 720 - 20
h h
Cs A
h) = i
o(h) 8h8  2h2
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Liquid dewetting: Mathematical model

Bulk (0 < z < h):

p(Bru+u-Vu
u

—Vp+pAu, V-u=0,
(u, w), x = (z,2)

Capillary interface (z = h(z,t)):
n-IM-t=0, n-I-n=o0k—¢'(h), (0,0ih) n=u-n.
_ Duzh po Lot (=0 1T
(1+(0:h)2)2/2" 7 (14 (9:h)2)1/27 7 (14 (9:h)2)1/2
. 20U 0.u + Oz w
I =—pidtp ((‘Lu + Oz w o w > ’

Liquid/solid interface (z=10): w=0

Navier-Slip condition: u=>bou

x
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Liquid dewetting: Thin film models

o No-slip (b =0):
8th = —az [h38w (8zwh - ¢l(h))]

o Weak-slip (b~ 1):
Oth = =0, [(hs + bhz) 0 (&mh B d)/(h))]

o Intermediate-slip (1 < b < ¢, °):
Oh = =04 [*0x (Ol — ¢'(h))]

o Strong-slip (b= §/€2):

-
Bh
Oth+ 0z (hu) = 0
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Liquid dewetting: Rim evolution

Matched asymptotics for ¢t —

Region I | Region IT

Region ITT

s s(D+w (1)

o Noslip (n=3): s(t) ~ct/(clnt+1), (Flitton, King 2004)

o Intermediate slip (n = 2):  s(t) ~ Ct*/3 (FK04; Miinch., W, Witelski 05)

o Strong slip: sty ~Ct, a~1 (Evans, King, Miinch, 2006)

~C (no slip & strong slip)

—> Dewetting Rates:
~ Ct™'/3  (intermediate slip)

Implications for contact-line instability?
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Liquid dewetting of polymer films: Experiments

0s 540 s 1260 s 2100 s 3060 s

s
E J .
5400's. 6840's 8520's, 9720's

2400 s 3960 s
Source: Karin Jacobs’ group, Univ. Saarland

PS on DTS/SiO2/Si

D/um

PS on AF1600/SiO2/Si

400

o
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Surface directed spinodal decomposition

Surface directed
spinodal decomposition

Height [nm]

y(x)

Confined bulk diffusion 0.0
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z=1

B <0 B
¢=0 7(1) 7=
A 00 0 A
z=0

o iz o

¢ order parameter, p chemical potential, F' bulk free energy
S =0Dp,  p=F(9)—Ag,
F(¢)=—x¢"+¢'/6, x=(1-T)/T
Boundary conditions at z = 0, d for antisymmetric walls:
pz =0 (no-flux),
e = Bi(1—¢°/(3x0)"'?)

Initial condition

¢(z,0) = 0.

Cahn 1977, Binder 1995, Puri & Binder (2002, 2007,. ..), Gheoghegan & Krausch (2003)
Cubic surface energy: e.g. Xu & Wang 2011
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Sharp Interface Model

Bmu(l) + azzu(l) =0, on0<z<h and h<z<d,

) ohggy . 1 e o1t B
T A h"‘z(sx)l/2<[a””“ he=0u®] ), atz=h,

8z,u(1) =0 at 2 =0, d.

Conditions at 3-phase contact line z = s(t):

h=0, hy =tan6, ¢ =0,

281(1+x)

ith _
wit cos 6 35

(Cahn 77 - Modica 87).

Conditions for A/B interface at  — oc:

h—1, gqg—0.
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Thin film model

Notice mass conservation:

d
ht4+q. =0 with qzax/ ndz.
0

For 8 <« 1, rescale and use thin film approximation.

d::fi=0, on0<Zz<h(z1) and h(z,1) < Z < d,
ﬂ:ﬁii, até:ﬁ(~,f),
hy = —[0:41)" at z = (i, 1),

Contact line and far-field conditions:

x:s(t): h=0, 1350:]., ﬁiiizo; T — 00 h—)]., ili;ji;—>0
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Top: Evolution of film in lubrication model — Bottom: Phase field model
Parameters PFM: xo = 0.1, 81 = 0.11, e = 0.03, § = 50°.



[0)

00 150 0 50

100 150 OO 50

T T

50 100

El

a b
Top: Evolution of f(llr)n in lubrication model — B(ot)tom: Phase field model
Parameters PFM: xo = 0.1, 81 = 0.11, ¢ = 0.03, , 0 = 45°.

Hennessy et al., EPL 2014, Hennessy et al., SIAP, 2014
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