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Mathematical Modeling

STARS - AMEBEA - LIQUID UNDER THERMAL GRADIENT
Single to multi-armed spirals

Forces that govern the motion of the indivdual stars or amebea are very different !!
Presently no one can compute millions/billions of 3D paths of interacting stars or
amebea, yet

on a large scale the millions of individuals behave as if their mass were continuously
distributed
forming similar large scale structures

Mathematical model that is able to describe these large scale patterns will have to
be able to reduce the description to the essential most dominant forces creating
these structures and their dynamics

Power of Applied Mathematics is to be able model these (physically unrelated)
structures AND analyse them with common mathematical tools

Derivation of a averaged continuum model, analysis, numerical solution

Important in modeling: Know the errors
Dimensional Analysis and Scaling
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Dimensional Analysis

1945 first atomic explosion in New Mexico: classified1

1947 movie of explosion appeared

1950 G. I Taylor (University of Cambridge) published article on

energy (still classified!!!) of explosion.

What effects might be expected during nuclear fission?

To answer this question:

Calculate motion and pressure of ambient gas after explosion
What is known ? What can be assumed ?

After short, intense initial period: Shock appears
Governing equations inside shock wave
Assume: viscous effects are negligible (at this early stage), spherical symmtry

1Barenblatt, ”Scaling“ (2012)
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Governing Equations (Spherical Symmetry)

Conservation of mass ∂tρ+
1

r2
∂r

(
ρr2u

)
= 0

Conservation of momentum ∂tu+ u∂ru+
1

ρ
∂rp = 0

Conservation of energy ∂t

(
p

ργ

)
+ u∂r

(
p

ργ

)
= 0

Boundary Conditions

ρs(us −D) = −ρ0D

ρs(us −D)2 + ps = po + ρ0D
2

ρs(us −D)

(
γ

γ − 1

ps
ρs

+
(us −D)2

2

)
= −ρ0D

(
γ

γ − 1

p0
ρ0

+
D2

2

)
Initial Conditions

ρ(r, 0) = ρ0(r), p(r, 0) = p0(r), u(r, 0) = 0 r ≥ r0

ρ(r, 0) = ρi(r), p(r, 0) = pi(r), u(r, 0) = ui(r) r < r0

E = 4π

∫ r0

0

ρi

(
u2
i

2
+

1

γ − 1

pi
ρi

)
r2 dr
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Scaling

(i) Location of shock rs depends on: E, ρ0, t, t0, p0, γ

(ii) Assume: energy is suddenly released in infinitely concentrated form

⇒ point source i.e. r0 ≪ rs

Assume: pressure of moving gas ps ≫ p0 ⇒ neglect terms with p0 at shock

Units [E] = gcm2

s2
, [ρ0] = g

cm3 , [t] = s, [r0] = cm, [p0] = g
cms2

(i) & (ii) ⇒ neglect r0, p0

⇒ S =
(

Et2

ρ0

)1/5

⇐ dimension of length

⇒ I := rs
S

= F (S, ρ0, t, γ) dimensionless !

⇒ depends only on constant γ

⇒ Taylor’s Scaling Law rs = C(γ)
(

Et2

ρ0

)1/5

⇒ 5
2
log10 rs = 5

2
log10 C + 1

2
log10

(
E
ρ0

)
+ log10 t ⇒ E
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Scaling
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Buckingham-Pi Theorem

Assumptions
(i) A quantity u to be determined in terms of measurable quantities {w1, ..., wn}:

u = f(w1, ..., wn) (1)

(ii) {u,w1, ..., wn} involve m fundamental dimensions L1, ..., Lm

(iii) The dimension of a quantity z is a product of powers of the fundamental dimensions

[z] = Lα1
1 Lα2

2 · · ·Lαm
m αi ∈ R

Conclusions
(i) (1) can be expressed in terms of dim’less quantities.

(ii) bi =

 b1i
...

bmi

 dimension of wi, B =

 b11 . . . b1n
...

...
bm1 . . . bmn

 dimension of problem.

Number of dim’less quantities is
k + 1 = n+ 1− r(B), where r(B) = rank of B.

Exactly k of these depend on {w1, ..., wn}
(iii) Let xi, i = 1, ...k be k = n− r(B) linearly independent solutions x of Bx = 0.

Let a be the dimension vector of u and y a solution of By = −a. Then (1) reduces to
π = g(π1, ..., πk), (2)

where
π = uwy1

1 · · ·wyn
n and πi = uw

x1i
1 · · ·wxni

n

are dim’less quantities
and (1) becomes u = w−y1

1 · · ·w−yn
n g(π1, ..., πk) (3)
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Buckingham-Pi Theorem

Homework !
Let u = R radius of shock wave, with R = f(w1, ..., w4)
and w1 = E, w2 = t, w3 = ρ0, w4 = p0
Using fundamental dimensions, obtain dimension matrix

B =

 2 0 −3 −1
1 0 1 1
−2 1 0 −2


Apply Buckingham-Pi: r(B) = 3 ⇒ k = n− r(B) = 4− 3 = 1.
Solution to Bx = 0 is
x1 = − 2

5
x4, x2 = 6

5
x4, x3 = − 3

5
x4 where x4 arbitrary (e.g. x4 = 1)

⇒ Dimensionless quantity: π1 = p0

(
t6

E2ρ30

)1/5

Solution of By = −a is y =
1

5


−1
−2
1
0

, dimension of R is a =

10
0


⇒ Dimensional Analysis: R =

(
Et2

ρ0

)1/5

g(π1)
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Interface formation and dynamics
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Interface formation and dynamics
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Phase separation: Cahn-Hilliard equation

Cahn-Hilliard equation
∂ϕ

∂t
= ∇ ·

(
M ∇δf

δϕ

)
Total free energy: Ginzburg-Landau free energy

f [ϕ, T ] =

∫
V

F (ϕ(x), T (x)) +
1

2
ϵ|∇ϕ|2 dx

Bulk free energy:

F = ϕ(1− ϕ) + kBT (ϕ lnϕ+ (1− ϕ) ln(1− ϕ))

Simplest free energy, combining bulk contribution
from a binary mixture and interfacial energy.

Mass conservation:
∂ϕ

∂t
= −∇ · J

J = −M∇ · µ with µ =
δf

δϕ
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Phase separation: Cahn-Hilliard equation

∂u

∂t
= ∆µ in Ω = Ω+ ∪ Ω−

µ = F ′(u)− ϵ2∆u

n · ∇µ = 0 , n · ∇u = 0 on ∂Ω

Solutions reach near phase equilibrium after O(1) time.

Near phase equilibrium:

solution has developed an interface between precipitates Ω+, Ω− of width of O(ε)

approaching a sharp interfaces Γk as ϵ → 0

Dynamics of the precipitates evolves on the slow time-scale τ = εt

⇒ ϵ
∂u

∂τ
= ∆µ

Analysis ⇒ Matched Asymptotic Expansions

Ω +

Ω−Ο(ε)

Γ
k
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Asymptotics expansions

Definitions
(i) Let u(x; ϵ) and v(x; ϵ) be functions defined in D ⊂ Rn and I : 0 ≤ ϵ ≤ ϵ0(x). Then

u(x; ϵ) = O(v(x; ϵ)), in D, as ϵ → 0

if for each x ∈ D there exists k(x) and and I such that |u| ≤ k|v| for each ϵ ∈ I.

(ii)
u(x; ϵ) = o(v(x; ϵ)), in D, as ϵ → 0

if for each x ∈ D and given δ > 0, there exists I : 0 ≤ ϵ ≤ ϵ(x, δ) s.t. |u| ≤ δ|v| for
all ϵ ∈ I and denote this by u ≪ v.

(iii) An asymptotic sequence {ϕn(ϵ)}, n = 1, 2, ... is a sequence such that
ϕn+1(ϵ) = o(ϕn(ϵ)) as ϵ → 0.

(iv) The series
∑N

n=1 ϕn(ϵ)un(x) is called an asymptotic expansion of u w.r.t. {ϕn(ϵ)}
for ϵ → 0, if for each M = 1, ..., N

u(x; ϵ)−
N∑

n=1

ϕn(ϵ)un(x) = o(ϕM ), as ϵ → 0
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Asymptotics expansions

Example2: Consider erf(x) = 2√
π

∫ x

0
exp(−t2) dt

exp(−t2) is analytic in the entire complex plane C so that its Taylor series

erf(x) =
2

π

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
=

2√
π

(
x− x3

3
+

x5

10
− x7

42
+

x9

216
− x11

1320
+ · · ·

)
converges with infinite radius of convergence.
Accuracy: For an accuracy of 10−5

upto x = 2 need 16 terms, upto x = 3 need 31 terms, upto x = 5 need 75 terms

For round-off error 10−7: At x = 5 largest term is 6.6 · 108 ⇒ WRONG answer!

ALTERNATIVE: Integrate by parts

erf(x) = 1− 2√
π

∫ ∞

x

exp(−t2) dt = 1−exp(−x2)

x
√
π

(
1− 1

2x2
+

1 · 3
(2x2)2

− 1 · 3 · 5
(2x2)3

+ · · ·
)

⇒ series diverges for all x and radius of convergence is zero! BUT:
x = 2.5 need 3 terms for accuracy of 10−5, x = 3 need 2 terms for accuracy of 10−5

This series is an asymptotic expansion!

2Jon Chapman, Univ. of Oxford
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Matched asymptotic expansions

A simple but instructive example:

ϵ y′′ + 2 y′ + 2 y = 0 in 0 < x < 1, ϵ ≪ 1

y(0) = 0 y(1) = 1

As ϵ → 0 order of ODE decreases ⇒ one BC can’t be satisfied
⇒ singular perturbation problem

Region where ϵ = 0-problem does not have solution: Boundary layer
Where is the boundary layer (BL)?
Let BL be at x = x0: x = x0 + ϵαx̄ or

Inner (BL) variable

x̄ =
x− x0

ϵα
, α > 0

Assume x0 = 0, define Y (x̄; ϵ) = y(x; ϵ)
Inner (BL) problem

ϵ1−2α d2Y

dx̄2
+ 2ϵ−α dY

dx̄
+ 2Y = 0, 0 < x̄ < ∞, Y (0) = 0
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Matched asymptotic expansions

Outer expansion Assume solution of outer problem has asymptotic expansion

y(x; ϵ) = y0(x) + ϵ y1(x) +O(ϵ2)

Note: iterative method
Leading order problem (O(1)):

y′
0 + y0 = 0 y0(1) = 1

⇒ y0(x) = exp(1− x)

Inner expansion
Assume

Y (x̄; ϵ) = Y0(x̄) + ϵγY1(x̄) +O(ϵδ), δ > γ, γ > 0
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Matched asymptotic expansions

Leading order problem:

ϵ1−2α d2

dx̄2
(Y0 + h.o.t.) + 2 ϵ−α d

dx̄
(Y0 + h.o.t.) + 2 (Y0 + h.o.t.) = 0

Dominant balance ⇒ leading order problem
(i) 1st and 3rd term balance and 2nd term is of smaller order as ϵ → 0

⇒ 1− 2α = 0 ⇒ α = 1
2

⇒ 1st and 3rd are O(1) and 2nd of O(ϵ−1/2) as ϵ → 0  
(ii) 1st and 2nd term balance and 3rd is smaller

⇒ α = 1 ⇒ 1st& 2nd are O(ϵ−1) and 3rd O(1)
√

d2Y0

dx̄2
+ 2

dY0

dx̄
= 0 for 0 < x̄ < ∞

Y0(0) = 0

⇒ Y0(x̄) = A(1− exp(−2x̄))
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Matched asymptotic expansions

Matching
There exist a domain where inner and outer solutions approximate same function

⇒ Overlap-Domain
⇒ there exist an intermediate variable xη such that

xη =
x

η(ϵ)
such that ϵ ≪ η(ϵ) ≪ 1

inner

outer

ε η ηη
1 2

overlap domain

0 1
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Matched asymptotic expansions

Theorem
Kaplun’s Extension Theorem
Let ϵ ≪ η(ϵ) ≪ 1 such that xη = x/η(ϵ)

(i) There exist an η1(ϵ) such that for xη fixed

lim
ϵ→0

youter(xη)− y0(η(ϵ) xη) = 0 for any η(ϵ) that satisfies η1(ϵ) ≪ η(ϵ) ≪ 1.

(ii) There exist an η2(ϵ) such that for xη fixed

lim
ϵ→0

yinner(xη)− Y0(ϵη(ϵ)xη) = 0 for any η(ϵ) that satisfies ϵ ≪ η(ϵ) ≪ η2(ϵ).

Remark
Kaplun’s Hypothesis
The domain of validity of youter and yinner overlap, i.e. η1 ≪ η2. In this overlap domain
the leading orders of youter and yinner agree.

Proofs: P. Lagerstrom, "Matched asymptotic expansions: Ideas and Techniques",
Spriner-Verlag, 1988.
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Matched asymptotic expansions

Matching

Let η(ϵ) = ϵβ with 0 < β < 1 so that ϵ ≪ ϵβ ≪ 1 and define the intermediate
variable

xη =
x

ϵβ
.

Then

yinner = A
[
1− exp

(
−2

xη

ϵ1−β

)]
+ h.o.t. → A+ e.s.t.+ h.o.t. as ϵ → 0, xη fixed

and

youter = exp
(
1− xηϵ

β
)
+ h.o.t. → exp(1) + h.o.t. as ϵ → 0, xη fixed

⇒ A = exp(1).
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Matched asymptotic expansions

Uniformly valid (composite) expansion
To leading order the asymptotic solution valid in the whole domain:

yc(x; ϵ) = y0(x) + Y0

(x
ϵ

)
− matched part + h.o.t.

Matched part: y0(0).

⇒ yc(x; ϵ) = exp(1− x)− exp

(
1− 2x

ϵ

)
+ h.o.t.

Next order problem

dy1
dx

+ y1 = −1

2

d2y0
dx2

, y1(1) = 0,
d2Y1

dx̄2
+ 2

dy1
dx̄

= −2Y0, Y1(0) = 0

also needed to estimate validity of leading order result

multiple BL, corner layers, transition layers, ...
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Sharp-interface

Ω +

Ω−Ο(ε)

Γ
k

Outer problem

u(τ,x; ε) = uo(τ,x) + εu1(τ,x) + ε2u2(τ,x) +O(ε3)

µ(τ,x; ε) = µo(τ,x) + εµ1(τ,x) + ε2µ2(τ,x) +O(ε3)

Leading order

0 = ∆µo = ∆F ′(uo)

O(ε)

∂uo

∂τ
= ∆µ1 = ∆

(
F ′′(uo)u1

)
O(ε2)

∂u1

∂τ
= ∆µ2 = ∆

(
F ′′(uo)u2 +

1

2
F ′′′(uo)u

2
1 −∆uo

)
+ boundary conditions on ∂Ω

Boundary conditions on Γk ⇒ matching to ’inner’ problem near Γk
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Sharp-interface

t

Ο(ε)Ω
+

Ω
−

Γ
k

x

ν{zε

r

Inner problem
Define boundary layer with z =’inner’ variable
Parametrization of curve Γk:
r(τ, s) = (r1(τ, s), r2(τ, s)), s is arclength

x(τ, s, z) = r(τ, s) + ϵ z ν(τ, s)

x = (x1, x2) = (x, y), r(τ, s) = (r1(τ, s), r2(τ, s))

ν(τ, s) =

(
−∂r2

∂s
(τ, s),

∂r1
∂s

(τ, s)

)
, t(τ, s) =

(
∂r1
∂s

(τ, s),
∂r2
∂s

(τ, s)

)
Sharp-interface model

∆µ−
1 = 0 in Ω− , n · ∇µ−

1 = 0 on ∂Ω− , µ±
1 = µ̃1(τ, r) , ∆µ+

1 = 0 in Ω+

Interfacial velocity

V ν = − [[ν · ∇xµ±
1 (τ, r)]]

[[u±
o ]]

Sharp-interface model governs the long-time dynamics of the phase field model
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Multi-scale dynamics of patterns

AF 1600 Teflon DTS

Karin Jacobs and group:
Condensed Matter Physics, Saarland University
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Liquid dewetting: Driving force

h∞

z
y

x

z=h(x,y,t)

SiO SiOTS  / DT / AF 1600

h
*

0 20 40
h

-0.2

-0.15

-0.1

-0.05

0

φ 
(h

)

0 50
-0.0005

0

0.0005

h*

ϕ(h) =
cs
8h8

− A

2h2
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Liquid dewetting: Mathematical model

Bulk (0 < z < h):

ρ (∂tu+ u · ∇u) = −∇p+ µ∆u, ∇ · u = 0,
u = (u,w), x = (x, z)

Capillary interface (z = h(x, t)):

n ·Π · t = 0, n ·Π · n = σκ− ϕ′(h), (0, ∂th) · n = u · n.

κ =
∂xxh

(1 + (∂xh)2)3/2
, t =

(1, ∂xh)
T

(1 + (∂xh)2)1/2
, n =

(−∂xh, 1)
T

(1 + (∂xh)2)1/2
,

Π = −p id+µ

(
2∂xu ∂zu+ ∂xw

∂zu+ ∂xw ∂zw

)
.

Liquid/solid interface (z = 0): w = 0

Navier-Slip condition: u = b ∂zu

0

x

b b= ∞

z

h
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Liquid dewetting: Thin film models

No-slip (b = 0):

∂th = −∂x

[
h3∂x

(
∂xxh− ϕ′(h)

)]
Weak-slip (b ∼ 1):

∂th = −∂x

[(
h3 + bh2) ∂x

(
∂xxh− ϕ′(h)

)]
Intermediate-slip (1 ≪ b ≪ ϵ−2

ℓ ):

∂th = −∂x

[
h2∂x

(
∂xxh− ϕ′(h)

)]
Strong-slip (b = β/ϵ2ℓ):

Re (∂tu+ u∂xu) =
4 ∂x(h∂xu)

h
+ ∂x

(
∂xxh− ϕ′(h)

)
− u

βh

∂th+ ∂x (hu) = 0
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Liquid dewetting: Rim evolution

Region I Region II

Region III

s(t) (t) ws(t)+
h∗

h 8

Matched asymptotics for t →
∞.

No slip (n = 3): s(t) ∼ c t/(c ln t+ 1) , (Flitton, King 2004)

Intermediate slip (n = 2): s(t) ∼ Ct2/3 (FK04; Münch., W, Witelski 05)

Strong slip: s(t) ∼ C tα, α ∼ 1 (Evans, King, Münch, 2006)

=⇒ Dewetting Rates:

∼ C (no slip & strong slip)

∼ Ct−1/3 (intermediate slip)

Implications for contact-line instability?

Barbara Wagner (WIAS) CERN Training Lecture 2019 14/15 March 2019



Liquid dewetting of polymer films: Experiments

2

380 s 1610 s 3030 s 4350 s 5900 s 7280 s

220 s 540 s 970 s 1500 s 1760 s 2130 s 20 µm

D
/ 
µ

m 0 30 40 50 60 702010

0 s 2100 s 3060 s 3780 s 4620 s 5340 s1260 s540 s

0 s 3960 s 5400 s 6840 s 8520 s 9720 s2400 s1080 s

a)

b)

c)

d)

FIG. 1: Dewetting scenario of a hole (rows a and b) and a straight front (rows c and d) on DTS (rows a and c) and
AF 1600 (rows b and d) at 120 ◦C. The hole radius of the dewetting PS(10.3k) film of 115(5) nm thickness is given
by R. The dewetted distance D of a 125(5) nm thick PS(13.7k) film represents the situation of a straight front.
Optical images of straight fronts are 80µm wide. The dewetting dynamics of straight fronts c and d are given in

Fig. 2.
Note: The droplet detachment appearing at earlier stage for straight fronts D ≈ 60 µm compare to holes R ≈ 80 µm
is explained by a faster accumulation of volume per unit length in the rim as the perimeter of the hole increases

with time.
Informative note: The corresponding dewetting distances are for DTS 17(1) µm (220 s), 31(1) µm (540 s),

47(5) µm (970 s), 68(14) µm (1500 s), 77(21) µm (1760 s), 93(26) µm (2130 s) and for AF 1600 8(1) µm (380 s),
32(1) µm (1610 s), 53(2) µm (3030 s), 73(3) µm (4350 s), 74(3) µm (5900 s), 120(5) µm (7280 s).

PS on DTS/SiO2/Si

PS on AF1600/SiO2/Si

Source: Karin Jacobs’ group, Univ. Saarland
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Surface directed spinodal decomposition

Surface directed
spinodal decomposition

Wahlheim et al. 1994

Confined bulk diffusion *3cm

Barbara Wagner (WIAS) CERN Training Lecture 2019 14/15 March 2019



Phase-field model
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A

B

A

B

z=0

x

z=h

θ

φ=0

z=1

φ<0

φ>0

ϕ order parameter, µ chemical potential, F bulk free energy

ϕt = ∆µ, µ = F ′(ϕ)− ϵ2∆ϕ,

F (ϕ) = −χϕ2 + ϕ4/6, χ = (1− T )/T

Boundary conditions at z = 0, d for antisymmetric walls:

µz = 0 (no-flux),

ϵϕz = β1(1− ϕ2/(3χ0)
1/2)

Initial condition
ϕ(z, 0) = 0.

Cahn 1977, Binder 1995, Puri & Binder (2002, 2007,. . .), Gheoghegan & Krausch (2003)

Cubic surface energy: e.g. Xu & Wang 2011
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Sharp Interface Model

∂xxµ
(1) + ∂zzµ

(1) = 0, on 0 < z < h and h < z < d,

µ(1) =
σhxx

(1 + h2
x)1/2

, ht =
1

2(3χ)1/2

([
∂xµ

(1)hx − ∂zµ
(1)

]+
−

)
, at z = h,

∂zµ
(1) = 0 at z = 0, d.

Conditions at 3-phase contact line x = s(t):

h = 0, hx = tan θ, q = 0,

with cos θ =
2β1(1 + χ)

3σ
(Cahn 77 - Modica 87).

Conditions for A/B interface at x → ∞:

h → 1, q → 0.

Barbara Wagner (WIAS) CERN Training Lecture 2019 14/15 March 2019



Thin film model

Notice mass conservation:

ht + qx = 0 with q = ∂x

∫ d

0

µdz.

For θ ≪ 1, rescale and use thin film approximation.

∂z̃z̃µ̃ = 0, on 0 < z̃ < h(x̃, t̃) and h̃(x̃, t̃) < z̃ < d,

µ̃ = h̃x̃x̃, at z̃ = h̃(x̃, t̃),

h̃t̃ = − [∂z̃µ̃]
+
− , at z̃ = h̃(x̃, t̃),

∂z̃µ̃ = 0 at z̃ = 0, d;

Integrate and combine with mass conservation:

h̃t̃ + h̃x̃x̃x̃x̃ = 0.

Contact line and far-field conditions:

x = s(t) : h̃ = 0, h̃x̃ = 1, h̃x̃x̃x̃ = 0; x̃ → ∞ : h̃ → 1, h̃x̃x̃x̃ → 0.
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Simulations of rupturing cascade
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Top: Evolution of film in lubrication model – Bottom: Phase field model
Parameters PFM: χ0 = 0.1, β1 = 0.11, ε = 0.03, θ = 50◦.
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Rim shedding

0 200 400
x~

0
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z~ h
~
(x~,t~)

(a) (b) (c)
Top: Evolution of film in lubrication model – Bottom: Phase field model
Parameters PFM: χ0 = 0.1, β1 = 0.11, ε = 0.03, , θ = 45◦.

Hennessy et al., EPL 2014, Hennessy et al., SIAP, 2014
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