Introduction to Magnetic Flux Expulsion in Bulk Niobium Cavities

Sam Posen
TTC Topical Workshop on Flux
9 November 2018
CERN
Experiments to Probe the Physics of Flux Expulsion
N doped 1.3 GHz

Exactly the same setup – only difference is fast/slow cooldown

Field Enhancement from Magnetic Probe on Cavity Surface

Several factors influence Q_0-degradation from magnetic flux:

- Ambient magnetic field
 - Local value of Earth’s field, shielding, demagnetization, magnetic components, thermocurrents (static & dynamic), active compensation, etc. [discussed earlier this morning]

- Flux expulsion
 - Fraction of ambient flux is expelled out of superconductor vs becoming trapped in it during cooldown [the rest of today]

- Sensitivity
 - For a given amount of trapped flux, what is the added surface resistance [several presentations on this subject tomorrow]
1) Cooldown matters: cooldown can determine if ambient flux is trapped or expelled

Same cavity, just cooled differently through 9.2K

- #1: First fast from 300K
- #2: Slow from 15K
- #3: Fast from 15K

Flux expelled efficiently

Flux mostly trapped

2K, 1.3 GHz

Systematic Method for Measuring Flux Expulsion

- An axial magnetic field is applied during cooldown. Fluxgate magnetometers at the equator measured the magnetic field before B_{NC} and after B_{SC} superconducting transition. Measurements are performed as a function of dT/dx.

 - Complete trapping: $B_{SC}/B_{NC} = 1$
 - Complete expulsion: $B_{SC}/B_{NC} \approx 1.7$

2) Large thermal gradients at T_c promote expulsion of flux

- **Fast cool-down** lead to large thermal gradients which promote efficient flux expulsion
- **Slow cool-down → poor flux expulsion**

Graphs and Tables

- **Left Graph:**
 - Title: Onset of strong increase in trapping
 - X-axis: T_1-T_2 (K)
 - Y-axis: Expulsion ratio B_{sc}/B_{tc}
 - Data points:
 - Black squares: N doped
 - Red circles: EP+120C

- **Right Graphs:**
 - Two graphs showing R_{res} vs T_1-T_2 (K)
 - Graphs for different E_{ac} values:
 - $E_{ac} = 4$ MV/m
 - $E_{ac} = 16$ MV/m
 - Legend:
 - Black squares: $E_{ac} = 4$ MV/m
 - Red circles: $E_{ac} = 16$ MV/m
 - Data points:
 - Black squares: Q at 1.5K
 - Red circles: Q at 3x10^-11, 2x10^-11, 1x10^-11

References

2) Large thermal gradients at T_c promote expulsion of flux
2) Large thermal gradients at T_c promote expulsion of flux.
2) Large thermal gradients at T_c promote expulsion of flux.
2) Large thermal gradients at T_c promote expulsion of flux.
2) Large thermal gradients at T_c promote expulsion of flux

Top of cavity

Bottom of cavity
2) Large thermal gradients at T_c promote expulsion of flux
2) Large thermal gradients at T_c promote expulsion of flux
2) Large thermal gradients at T_c promote expulsion of flux
3) Slow, uniform cooldown tends towards trapping all flux – even if cavity expels well at large dT/dx.

- **Fast cool-down** lead to **large thermal gradients** which promote efficient flux expulsion.
- **Slow cool-down** \rightarrow poor flux expulsion.

As middle hits T_c,

Measure temp at top of cavity

Helium cooling from below

3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cool down tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
3) Slow, uniform cooldown tends towards trapping all flux
4) Surface treatments have insignificant impact

Different surface conditions in cavities with similar bulk history: similar expulsion

S. Posen et al., J. Appl. Phys. 119, 213903 (2016)
4) Surface treatments have insignificant impact

Different surface conditions in cavities with similar bulk history: similar expulsion

Depends on **bulk treatment, not surface**

S. Posen et al., J. Appl. Phys. 119, 213903 (2016)
Several factors influence Q_0-degradation from magnetic flux:

- Ambient magnetic field
 - Local value of Earth’s field, shielding, demagnetization, magnetic components, thermocurrents (static & dynamic), active compensation, etc. [discussed earlier this morning]

- Flux expulsion
 - Major influence from bulk of superconductor
 - Fraction of ambient flux is expelled out of superconductor vs becoming trapped in it during cooldown [the rest of today]

- Sensitivity
 - Major influence from surface of superconductor
 - For a given amount of trapped flux, what is the added surface resistance [several presentations on this subject tomorrow]
5) Some niobium production runs have very poor expulsion – even with large ΔT

- Seems to be a great deal of variability in as-received material
- Variability from batches even within a single vendor

![Graph showing niobium production runs with variability in expulsion](image)
5) Some niobium production runs have very poor expulsion – even with large ΔT

- Seems to be a great deal of variability in as-received material
- Variability from batches even within a single vendor

![Graph showing variability in niobium production runs](image)
6) High temperature treatment can make poorly expelling material expel well even with small ΔT

- 900°C – 1000°C furnace treatment *improves* expulsion
6) High temperature treatment can make poorly expelling material expel well even with small ΔT.

- 900°C furnace treatment improves expulsion.

- High temperature treatment can make poorly expelling material expel well even with small ΔT.

- 900°C-1000°C treatment improves expulsion.

- 1.3 GHz 1-cell cavities

- AES017 800°C doping
- AES017 +1000°C 4h + 800°C doping
- AES018 EP +800°C 6h
- AES018 +1000°C 1h
- AES022 +6hr 800°C
- AES022 +3hr 900°C

- B_{ext} < 1 mG
- B_{ext} : 5 mG
- B_{ext} : 5 mG

- E_{acc} = 0, 5, 10, 15, 20, 25, 30

- Q_0 = 10^{10}, 10^{11}

- Full trapping

- Fermilab

S. Posen et al., J. Appl. Phys. 119, 213903 (2016)
7) Improvement in expulsion is correlated with grain growth.

LCLS-II material with weak expulsion, after 900 C

LCLS-II material with strong expulsion, after 900 C

1000 C 4 hrs
Tokyo Denkai

800 C only
Wah Chang
7) Improvement in expulsion is correlated with grain growth

Why is 800 C enough to grow giant grains in some Nb but 1000 C required for others?

Impurities/RRR? Dislocations?

800 C only

Tokyo Denkai

Wah Chang

1000 C 4 hrs
7) Improvement in expulsion is correlated with grain growth.
8) Heavy deformation degrades expulsion behavior

Influence of stress/dislocations?

Full expulsion

Heavy tuning

Full trapping

- AES020 5 day 800 C
- AES020 bake in H
- AES020 +/-1 MHz tuning
- AES020 +/-10 MHz tuning
- AES020 +900C 3h
- AES020 +/-1 MHz tuning
9) Geometry affects expulsion

- Geometry can affect the location and intensity of trapped flux
- Trapping in the high magnetic field region can lead to substantial heating

Comparison of Theoretical Models
Model for Flux Expulsion – Competition Between Forces

- Competition between two forces:
 - Pinning force from pinning sites
 - Depinning force from thermal gradient

See also M. Checchin, SRF 2017
As dT/dx increases, the probability of having a flux line interact with a pinning site decreases.

and ξ^*. The existence of the factor $|T'|^{-1}$ in Eq. (13) can be understood as follows. As a temperature gradient increases, a thickness of the vortex state domain decreases [see Eq. (17)], and a number of vortices contained in the vortex state domain decreases. Then a reaction probability decreases, and a number of trapped vortices, N_{trap}, decreases. Note that, when

See T. Kubo, PTEP 2016 053G01
As dT/dx increases, the **probability** of having a flux line interact with a pinning site decreases.
Very Slow/Uniform Cooldown

(a) Normal conducting \((T>T_c)\)
(b) Superconducting \((T<T_c)\)

Large Thermal Gradient

Slow/Uniform Cooldown

Identifying the Features Responsible for Pinning Flux During Cooldown in SRF-Grade Bulk Niobium
Criteria for Features

- It is dominated by **bulk** properties - not impacted by standard surface treatment
- Pinning is made weaker by **heat treatment** for several hours in temperature range of 900±100 C, and the temperature depends on the material
- Pinning is made stronger by **cold work** of material
Criteria for Features

- It is dominated by **bulk** properties - not impacted by standard surface treatment
- Pinning is made weaker by **heat treatment** for several hours in temperature range of 900 ± 100 C, and the temperature depends on the material
- Pinning is made stronger by **cold work** of material

Some Possible Candidates

- Grain boundaries
- Impurities (possibly segregated at grain boundaries)
- Dislocations (possibly congregated as tangles or walls)
Grain Boundaries

Non-rolled

Rolled sheets

Calculated full expulsion

TE1RILG001 (not rolled) as received
TE1RILG001+EP+600 C 3 h
TE1RILG002 (rolled) as received
TE1RILG002+EP+600 C 3 h

B_{SC}/B_{NC}

ΔT During Cooldown [K]

S. Posen (FNAL), TTC Riken 2018

J. Koszegi (HZB), J. App. Phys

J. Koszegi (HZB), J. App. Phys
Impurities

Legend: Red line: hot spot, Blue line: cold spot

- NbH-
- O-
- C-
- NbN
- C_2-
- F

Interlaced

M. Martinello (FNAL), TTC Riken 2018
Dislocations

Local Misorientation Histogram

- Cold spot 1
- Cold spot 2
- Hot spot 1
- Hot spot 2

Low angle GBs

High angle GBs

M. Martinello (FNAL), TTC Riken 2018

S. Balachandran (ASC), TTC Riken 2018

High angle Grain boundary (>15°)

Low angle Grain boundary (3-4°)

LAGB (8°)

T. Konomi (KEK), TTC Riken 2018
Criteria for Features

- It is dominated by **bulk** properties - not impacted by standard surface treatment
- Pinning is made weaker by **heat treatment** for several hours in temperature range of 900±100 °C, and the temperature depends on the material
- Pinning is made stronger by **cold work** of material

Some Possible Candidates

- **Grain boundaries**
 - Grain boundaries unlikely to be dominant factor based on LG cavities, Magneto-optics
- **Impurities** (possibly segregated at grain boundaries)
 - Impurities unlikely to be dominant factor based on SIMS studies
- **Dislocations** (possibly congregated as tangles or walls)
 - Dislocations under intense study with EBSD, ECCI
Conclusion
Flux Expulsion R&D Outcome: Strong Q_0 Improvement in CM

- LCLS-II production cavities in Fermilab cryomodules
- Red – early cavity processing procedure
- Blue – processing procedure modified for flux expulsion

More details this afternoon
Crucial Questions

• What microscopic phenomena make different niobium production runs have such different flux expulsion behavior? (including different heat treatment temperatures required)
• What practical measurable quantities can we use to specify flux expulsion behavior in niobium?
• Can we modify specifications to give predictable flux expulsion behavior for a given heat treatment without compromising mechanical properties?
Red magnetic field lines are expelled from SC wall.

SC/NC front passing over wall during transition.

Simulation courtesy E. Cenni, CEA.