

TTC topical, CERN, 8-9 November 2018

How is trapped flux affected by the cavity geometry

D. Longuevergne, IPN Orsay

vs theoretica

Experimental

Magnetic sensitivity

SPIRAL2 QWR ESS Spoke SSRI Spoke MYRRHA Spoke ✓ $F_0 = 88 \text{ MHz}$ \checkmark F₀ = 352 MHz \checkmark F₀ = 352 MHz \checkmark F₀ = 325 MHz ✓ T = 2K ✓ T = 4.2K ✓ T = 2K ✓ T = 2K \checkmark Sv = 0.04 n Ω /mG \checkmark Sv = 0.006 n Ω /mG \checkmark Sv = 0.06 n Ω /mG \checkmark Sv = X \checkmark St = 0.05 n Ω /mG \checkmark St = X \checkmark St = X \checkmark St = 0.05 n Ω /mG \checkmark S_{théo} = 0.12 nΩ/mG \checkmark S_{théo} = 0.08 n Ω /mG \checkmark S_{théo} = 0.12 n Ω /mG \checkmark S_{théo} = 0.11 nΩ/mG (III)

> Magnetic sensitivity is way less than theoretical value and depend on field direction!

D. Longuevergne, TTC topical, CERN , 8th-9th November 2018

2

How is flux trapped ?

NSTITUT DE PHYSIQUE NUCLÉAIRE

Figure 38 $\alpha * \sqrt{RRR}$ versus la fréquence

How to apply corrections ?

- The calculation of the real sensitivity especially for complex geometries can't be analytic!
- How to calculate magnetic sensitivity of a structure with simulation code :
 - Evaluate the surface normal component and the additional resistance

$$R_{mag} = \sqrt{\frac{\omega \cdot \mu_0}{2 \cdot \sigma_n \cdot RRR}} \cdot \underbrace{H_{\perp}}_{H_{c2}}$$

- \Rightarrow This gives the amount of trapped flux... but not the sensitivity!
- ⇒ Trapped flux has to be subject to RF magnetic field
- Evaluate local power dissipations and integrate all over the geometry

$$S_{mag} = \frac{\iint\limits_{S} R_{mag} \cdot H_{RF}^{2} \cdot dS}{B_{res} \cdot \iint\limits_{S} H_{RF}^{2} \cdot dS}$$

GHZ

?

TESLA

ANALYSIS

Theore 0.22 nΩ @2	tical : 2/m G K	Trapped flux regions	RF surface currents	Sensitive regions to magnetic field		
Vertical field		re some data showing	this difference	0.092 nΩ/mG	MAX	
	of sensit	tivity on 1.3 GHz cavi	ties ?			
Horizo fiel (beam	ontal d axis)				MIN	
				0.137 nΩ/mG		

ANALYSIS

N	Theoretical : 0.11 nΩ/mG @2K	Trapped flux regions	RF surface currents	Sensitive regions to magnetic field	
S) 352 MH	Vertical field			0.057 nΩ/mG	MAX
DSR (ES	Horizontal field (beam axis)			0.055 nQ/mG	MIN

SSR1 (PIP-II) 325 MHz

ANALYSIS

Theoretical : 0.11 nΩ/mG @ 2K	Trapped flux regions	RF surface currents	Sensitive regions to magnetic field
Vertical field			
			0.046 n <u>C</u> 2/mG
Horizontal field (beam axis)			
			0.064 nO/mG

7

ANALYSIS

ЛНZ	Theoretical : 0.11 nΩ/mG @ 2K	Trapped flux regions	RF surface currents	Sensitive regions to magnetic field
RHA) 352	Vertical field			0.047 nΩ/mG
SSR (MYRI	Horizontal field (beam axis)			

8

MAX

MIN

(Spiral2

QWR

ANALYSIS

SUMMARY

	nΩ/m G		Transverse sensitivity	Beam axis sensitivity	Vertical sensitivity	
••	SPIRAL2 QWR @ 4.2K @ 88 MHz	Calculated	0.048	0.048	0.011	
U		Measured	0.05 (1	PNO)	0.006 (IPNO	Theoretical 0.08 nΩ/mG
<u> </u>		Error (%)	4 (-	-38)	-45 (-93)	_
6	MYRRHA SPOKE @ 2K @352 MHz	Calculated	0.061	0.062	0.047	
		Measured			0.043 (IPNO	Theoretical
Ö		Error (%)			-8.5 (-64)	0.12 hsz/mg
Ĕ	ESS SPOKE @ 2K @352 MHz	Calculated	0.057	0.055	0.057	
\mathbf{F}		Measured		0.06 (IPNO)		Theoretical
		Error (%)		<mark>9</mark> (-50)		0.12 nΩ/mG
	PIP-II SSRI @ 2K @ 325 MHz	Calculated	0.046	0.064	0.046	
0		Measured		0.05 (FNAL)		The susting
U		Error (%)		-22 (-55)		0.11 nΩ/mG

Error : relative error between measurement and calculations

(Error) : relative error between measurement and theoretical value

CONCLUSION

Systematic error from theoretical values : measured sensitivities are always a lot less!

=>Sensitivity does not only depend on material!

- Considering only the normal component seems to be a good approximation:
 - No systematic error between calculated and measured sensitivities
 - Explains difference between theoretical and measured sensitivities on several geometries
 - Explains difference of sensitivity depending on the orientation of residual field (SPIRAL2)
- Trapping flux is not enough to explain magnetic sensitivity, it has to happen in a RF magentic field region

THANKS FOR YOUR ATTENTION

ELLIPTICAL

MYRRHA

SSR1 (PIP-II)

D. Longuevergne, **TTC** to