

HL-LHC Status at CM # 8

Lucio Rossi HL-LHC Project Leader

CERN - 15 March 2018

Goal of HL-LHC as fixed in 2010

From FP7 HiLumi LHC Design Study application

The main objective of HiLumi LHC Design Study is to determine a hardware configuration and a set of beam parameters that will allow the LHC to reach the following targets:

A peak luminosity of $L_{peak} = 5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ with levelling, allowing:

An integrated luminosity of **250 fb**⁻¹ per year, enabling the goal of

L_{int} = 3000 fb⁻¹ twelve years after the upgrade.

This luminosity is more than ten times the luminosity reach of the first 10 years of the LHC lifetime.

Ultimate performance established 2015-2016: with same hardware and same beam parameters: use of **engineering margins**:

 $L_{peak\;ult} \cong 7.5\;10^{34}\;cm^{-2}s^{-1}$ and Ultimate Integrated $L_{int\;ult} \sim 4000\;fb^{-1}$

LHC should not be the limit. would Physics require more...

Project approved by CERN Council in June 2016

Technology landmarks

CIVIL ENGINEERING

2 new caverns and two new 300-metre service galleries, two new large shafts; 10 new technical buildings on surface in P1 and P5 (ATLAS and CMS)

"CRAB" CAVITIES 8 superconducting "crab" cavities for each of the ATLAS and CMS experiments to tilt the beams before collisions. LHC TUNNEL

FOCUSING MAGNETS

12 more powerful quadrupole magnets for each of the ATLAS and CMS experiments, designed to increase the concentration of the beams before collisions.

BENDING MAGNETS

pairs of shorter and more
 powerful dipole bending magnets
 to free up space for the new
 collimators.

COLLIMATORS

15 to 20 new collimators and 60 replacement collimators to reinforce machine protection.

2 new large 1.9 K helium refrigerators for HL-LHC near ATLAS and CMS

SUPERCONDUCTING LINKS

Electrical transmission lines based on a high-temperature superconductor to carry current to the magnets from the new service galleries to the LHC tunnel.

High Luminosity LHC Project

MEMBER STATES COLLABORATIONS¹

IR Magnets

CIEMAT Madrid: J-M. Perez, F. Toral INFN: A. Zoccoli², M. Sorbi³, P. Fabbricatore⁴

Uppsala University: T. Ekelöf (Magnets & Crab Cavities Testing)

G. Burt⁶ (Crab Cavities), S. Gibson⁷ (Beam Instr.) Y. Yang⁸ (Cold Powering)

HL-LHC PROJECT MANAGEMENT

Project Leader: Lucio Rossi, CERN Deputy Project Leader: Oliver Brüning, CERN Project Office Manager: Laurent Tavian, CERN

Configuration, QA, Resource Manager: Isabel Bejar Alonso, CERN Integration: Paolo Fessia & Michele Modena, CERN Collaborations (in-kind): Beniamino Di Girolamo, CERN Budget Officer: Benoit Delille, CERN Safety Officers: Thomas Otto & Christelle Gaignant, CERN

Communication: Isabel Bejar Alonso, CERN Secretariat: Cécile Noels & Céline Le Bon, CERN

NON MEMBER STATES COLLABORATIONS¹

US HL-LHC AUP⁹ - USA

Project Manager: G. Apollinari, FNAL Deputy Project Manager: R. Carcagno, FNAL Magnet Systems Crab Cavities System

KEK - Japan

LHC Upgrade Coordinator: K. Tokushuku SC D1 Magnet: T. Nakamoto

WP2 Accelerator Physics

Gianluigi Arduini Rogelio Tomas Garcia

WP3 IR Magnets

Ezio Todesco Paolo Ferracin

WP4 Crab Cavities & RF

Rama Calaga Ofelia Capatina

WP5 Collimation

Stefano Redaelli Roderik Bruce

In kind contributions

INFN Directorate

INFN Milano LASA

INFN Genova

WP8 Collider-Experiment Interface Helmut Burkhardt - F. Sanchez Galan

Sébastien Evrard

WP9 Cryogenics

WP6A Cold Powering

Amalia Ballarino

Vittorio Parma

WP6B Warm Powering

Michele Martino

Jean-Paul Burnet

WP7 Machine Protection

Daniel Wollman

Reiner Denz

Serge Claudet Rob Van Weelderen

WP10 Energy Deposition & R2E

Markus Brugger - Francesco Cerutti

WP11 11 T Dipole

Frédéric Savary Hervé Prin

WP12 Vacuum

Vincent Baglin Germana Riddone

WP13 Beam Instrumentation

Rhodri Jones Thibaut Lefevre

WP14 Beam Transfer

Chiara Bracco Brennan Goddard

WP15 Integration & (De-)Installation

Paolo Fessia Michele Modena

WP16 IT String & Commissioning

Marta Bajko - Mirko Pojer

WP17 Infrastructure & Logistics

Laurent Taylan Benjamino Di Girolamo

WP18 Controls Technologies

lavier Serrano Eugenia Hatziangeli

See Hilumi web page http://hilumilhc.web.cern.ch/

Partecipants HiLumi Collaboration Meetings

Project management full steam ahead

Technical Coordination Committee

- Installed in 2016 (replacing TC and PLC of HiLumi DS)
- Chaired by O. Bruning
 - M. Zerlauth, Y. Papaphilippou, A. Apollonio
- In total 59 meetings (20/y)
- 267 presentations
- A few critical decisions 2018
 - Optics configuration change, new perf. Table
 - ATLAS shielding, CMS beam pipe support
 - Circuit layout and local 120 A CL
 - Cold Diodes (subj.to final confimation)
 - FQ of IT quads ↔ HOC magnet length
 - Loss of reversibility (no second set CC)
- Average attendance: >35 people

PSM Project Steering Committee

- Started in 2017
- Scope: review of each WP by HLPO with GL & Dep. Head concerned, of: budget, MS & DLV, procurement and plan
- With template
- So far 67 PSMs (~1/week)
 - Max 5 times WP3-6A-8-11-15
 - Min 1 for WP18 (recent set up)

Production Readiness Reviews& Manufacturing Reviews (Quality)

- PRR for each equipment (~20) is assessed:
 - Scope of work: is there a clear definition and clear interfaces?
 - Procedures, construction specifications, executive drawings: are all in approved status, verified by due authority, and well documented?
 - Is Quality Assurance correctly in place: procedures, documentation, check/holding points, etc.?
 - Components, Assembly tools, Availability, qualifications
 - Production planning robustness.
- MR to ensure the quality is kept during production:
 - Adequateness and validity of certifications
 - Correct implementation and application of QP and MIP
 - Site organization (manufacturing, storage of components, finished product)
 - Implementation of document managing system
 - Actual training for documentation and of personnel
- Review panel with few permanent members and a few appointed ad hoc. :
- Chair PRR: D. Perini (EN/MME); Reviewed: TDIS, TANB, 11 T dipole coils and cold mass
- Chair MRR: I. Bejar Alonso (HLPO); to start in **January '19** (TDIS, DQW-CC, Collimators...)
- When the case, organized with Collaborating Institutes for in-kind

Recent signed collaborations and in-kinds

The HL-LHC IT STRING in the crowdy SM18 The String gives the clock to many WPs!

Recent internal review of the IT string

Risk register:new feature from 2017 Are we too optimsites?

See presentation by I. Bejar Alonso on Thurday

Risks related to Strategy & Planning

Main changes affecting Baseline since 2015! From C&S Review 2015 to C&S Review 2016

- New WP: WP18 Control Technologies
- collims of August 2016 to recover 120 MCHF Rebaselining of August 2016 to recover 120 MCHF String test; Main baseline changes:
- (MQYY);

- (re-evaluation of C.E. extra cost and extra-scope and T.I.) The valuation of the scoping of the Full performance all recovered (but less margin!)
- double-decker' solution for
- around LHC-P7 (2 sets of dipoles) and connection cryostats in
- miside the Budget At Completion of a new cost estimate (increased!), as provided during an S review of this WP in May 2016.

AND

CERN Accelerator Master Schedule change: Long Shutdown 2 delayed by 6 month and extended by 6 month. Long Shutdown 3 delayed by one year while maintaining its duration.

Main changes affecting Baseline since 2015! From C&S Review 2016 to C&S Review 2018

Main baseline changes:

- WP3: Additional proto for orbit correctors, no PIT R&D, reduced scope for Warm Magnets
- WP5: Contribution to low impedance material in primary collimators
- WP6A: Link design change (R&D needs), additional copper stabilizer
- WP6B: New R2E 120A converters and adding redundancy
- WP7: R&D on cold diodes
- WP9: New refrigerator at LHC P4 replaced by upgrade of existing refrigerator + purchase of mobile refrigerator for RF (Big saving! WP9)
- WP11: No PIT R&D, No PIT prototype, No tooling in industry
- WP12: New Tungsten supporting system (impact of CLIQ), coating of Q5&Q6 during LS2, alignment capabilities of +/- 2.5mm
- WP13: Implementation of final design on BGV proto, no cryo BLMs
- WP14: new design for MKI beam screens
- WP17: Cancellation of activities for CE, CV, EL for LHC-P4 (see WP9)

EVM & Planned value evolution since 2015 950 MCHF (Material)

LHC / HL-LHC Plan

HL-LHC established in summer 2010 in view of FP7-Hilumi LHC DS Installation of equipment will start in 2024 and HWC in 2026; today Oct. 2018 we are

HALF WAY through the project duration!

ULTIMATE HL-LHC performace

Year

In collaboration with M. Lamont

Updated table of parameters

Parameters	Nomin	al LHC	LHC 2018	HL-LHC	HL-LHC	HL-LHC
•	(Design	report'	max valueç	(standard) 🖵	8b+4e ¹²	(Ultimate)
Beam energy in collision [TeV]		7	6.5	7	7	7
N _b		1.15E+11	1.15E+11	2.2E+11	2.2E+11	2.2E+11
n _b		2808	2556	2760	1972	2760
Number of collisions in IP1 and IP5 ¹		2808	<u>2544</u>	<u>2748</u>	1967	<u>2748</u>
N _{tot}		3.2E+14	2.9E+14	6.1E+14	4.3E+14	6.1E+14
beam current [A]		0.58	0.52	1.1	0.79	1.1
x-ing angle [μrad]		285	320 ==> 260	500	470 ¹⁰	500
beam separation $[\sigma]^{11}$		9.4	10.3 ==> 6.8	10.5	10.5 ¹⁰	10.5
β^* [m]		0.55	0.30 ==> 0.25	0.15	0.15	0.15
ε_n [μ m]		3.75	2 ==> 2.5	2.50	2.20	2.50
r.m.s. bunch length [m]	,	7.55E-02	8.25E-02	7.61E-02	7.61E-02	7.61E-02
Total loss factor RO without crab-cavity	main			0.342	0.342	0.342
Total loss factor R1 with amising!!	Man			0.716	0.749	0.716
Virtual vice very profile be «upgrade vind				1.70E+35	1.44E+35	1.70E+35
Total loss factor R1 with Plan B that may be "upgraded" to restouch Thu morning		1.00E+34	2.00E+34	5.0E+34 ⁵	3.82E+34	7.5E+34 ⁵
Total loss factor R0 without crab-cavity Total loss factor R1 with promising!! Virtual optics very promising!! Flat optics very promising wupgraded to the state optics very promising! HiLumi Plan B that may be suppressed to the state optics very promising! HiLumi Plan B that may be suppressed to the state optics of the state optics opti	27		55	131	140	197
Flat optics very promisms be «upgrade Flat optics very promisms be «upgrade Flat optics for Branch Thu morning Thu morning HiLumi Plan B that may be «upgrade Thu morning Thu morning Thu morning Flat optics for HL-LHC) 8 See talk of S. Fartoukh Thu morning T			0.38	1.3	1.3	1.9
Leveling time [h] (assuming no emittance growth) 8, 13		-		7.2	7.2	3.5

Avancement from 7th Collaboration Meetign of Madrid

- CC into SPS with new cryogenic infrastructure anf first prton crabbing! Mission accomplished!
- USA: good quench perfomance of 1st Nb₃Sn IT QUAD Proto;
 Second proto, full length 4.2 m IT quad under test; Coils for series started.
- CERN 7.2 m IT near completion; starting coils for series!
- 1st proto 5.5 m 11 T dipole tested, under revamping (one coil not good)!
- 2 exceptional good short magnets in Nb₃Sn (11 T and QXF)
- Low impedance collimator proto tested in LHC!

Avancement from previous CM – 2 Two large C.E. contracts signed - groundbreaking 15 June 2018!!!

WP17.1: Civil-engineering work at Point 1

See specific presentation by P. Mattelaer on Wednesday Technical visit on Friday

Travaux Point 5

Chantier Point 5: almost 25 m excavated

Avancement from previous CM – 3

- First important contracts for HiTech equipment construction issued!
 - All Nb₃Sn conductor placed: at budget cost (RRP)
 - Industrial service for 11 T collared coils : high overcost
 - CC DQW, (dressed cavities) supply (pre and series): moderate undercost
 - Low impedance collimators (first batch for LS2): moderate undercost
- Launching last purchase of MgB2 and all cabling for SC links!
- Simple 2-wall cryostat validated (only 1.5 W/m losses!)
- Last call for in-kinds! And securing it. All final opportunity for options

Avancement from previous CM – 4

Final optimization approved, or almost:

- Magnet powering & circuits
- Integration
- Optimization of MS (full remote alignement; simplification of correctors; shorter cryogenics...) Task force P. Fessia & S. Claudet, looks very positive!! See talk by <u>P. Fessia on TUE. (and by H. Mainaud Durand</u> on THU on remote alignment)
- Decision on many options (see talk by O. Bruning on Tuesday).
- De-installation and installation: List of tasks and costs and interfaces completed in bottom up approach
- First «detailed» technical evaluation of de-installation (M. Modena)
- Readiness of installation with margin assessed (P. Fessia)

LS3 DE-INSTALLATION studies started!

V1.4 Optics and Layout

Major changes with respect to previous baseline:

- Q4: reusing existing cold mass (MQY+3MCBY) @ 4.5 K
- Q5: reusing existing cold mass (MQML+1MCBC) @ 4.5 K
- Possible thanks to the deployment of a fully remote alignment system to be used with safe beam.
- Apertures compatible with Round Optics with β *=15 cm and Flat optics β *=7.5/18-30 cm

Optics

- Improved Point 4 optics for Beam Instrumentation and elens.
- Further reduction of Q5.R6 required strength to avoid 1.9 K upgrade at 7.5 TeV

Possible optimization

- Crab angle increase for 7 TeV operations if Q7 can reach ultimate current
- TAXN aperture could be reduced by few mm → useful to reduce radiation to the matching section elements

BBLR compensation

- Successful demonstration of the compensation of the Beam-Beam Long Range effects (for flat and round beams) in machine studies both with octupoles and wires in IR1 and IR5
 - Important tools to further enhance performance (virtual luminosity, pile-up density, lifetime)

HL-LHC SPS Test stand for crab-cavities

DQW crab-cavity cryomodule

SPS-BA6, CC operation in 2018

Cryogenic operation facts for 1st year after completion of this new facility

SPS-DQW MDs with Beam

First injection – 12:55, May 23 2×10^{11} protons / bunch, 26 GeV

RF phase scan w.r.t the beam phase with cavity 1

CERN-RFD Fabrication Ongoing

IT Quad model MQXFS4 – final RRP Nb₃Sn

Progress of long IT Quad at CERN

Cold Power: effort for 60 m DEMO1 validation by end of the year

11 T dipole (and new connection cryostat)

1st 5.5 m long 11 T dipole before testing July '18

Lucio Rossi - 8th HiLumi Collaboration Meeting 2018

WP5: first HL-LHC hardware in the LHC

First TCLD jaw prototype at the company (courtesy of EN/STI)

Samples of MoGr (Molybdenum-Graphite) from producer (courtesy of EN/MME)

Dedicated talk by S. Gilardoni

WP5: Update on crystal collimation Scope: further improvement of ion cleaning after 2016 re-baselining.

<u>Scope</u>: further improvement of ion cleaning after 2016 re-baselining. Studying if, for ions, this can be an "adiabatic" upgrade of the IR7 system. 2017: **improved by up to x60 collimation cleaning** of Xe beams!

Courtesy EN/SMM

Courtesy UA9/PNPI

4 mm = 50 μrad, or 10 x 15m long LHC dipoles or 300 T at 7 TeV

Two goniometers installed on B1 in LS2; two more on B2 in 2017, upgraded in 2018.

4 operational crystals for collimation.

All details: special workshop organised this Friday!

https://indico.cern.ch/event/752062

19 October 2018 CERN

HL-LHC Crystal Collimation Day

Overview
Timetable
Contribution List
My Conference

The HL-HC project is considering crystal collimation as an option to improve the ion collimation cleaning efficiency. While the definitive assessment of needs and feasibility of such a system can be carried out only in 2019, the HL-HC project envisages to have a preliminary review of the state-of-, the-art and possible solution of the project envisages to have a preliminary review of the state-of-, the-art and possible solution of the project envisages to have a preliminary review of the state-of-, the-art and possible solution of the project envisages to have a preliminary review of the state-of-, the-art and possible solution of the project envisages to have a preliminary review of the state-of-, the project envisages to have a preliminary review of the state-of-, the project envisages to have a preliminary review of the state-of-, the project envisages to have a preliminary review of the state-of-, the project envisages to have a preliminary review of the state-of-, the project envisages to have a preliminary review of the state-of-, the project envisages to have a preliminary review of the state-of-, the project envisages to have a preliminary review of the state-of-, the project envisages to have a preliminary review of the state-of-, the project envisages to have a preliminary review of the state-of-, the project envisages to have a preliminary review of the state-of-, the project envisages to have a preliminary review of the state-of-, the project envisages to have a preliminary review of the state-of-, the project envisages to have a preliminary review of the state-of-, the project envisages to have a preliminary review of the state-of-, the project envisages to have a preliminary review of the state-of-, the project envisages to have a preliminary review of the state-of-, the project envisages to have a preliminary review of the state-of-, the project envisages to have a preliminary review of the state-of-, the project envisages to have a preliminary review of the state-of-, the project envisages to ha

WP5: pushing even further accelerator technology

It would allow controlling actively the halo, through a hollow electron beam (overlapped over three meters to the proton/ion beams) that selectively excites halo particles.

Cathode

Electron gun

Design nearly complete. Surpassed target e-beam current of 5A, now final cathode design (smaller) under test at FNAL.

Ready to built it if integrated into the baseline.

WP6B: R&D in Power & Precision

 Selection of Technology for Energy Storage for the 18kA

Lithium titanium oxide batteries (LTO),

LTO: the most suitable but also the safest and

ADC development for Class 0

New HPM7177 (based on commercial ADC): first prototype of signal conditioning and ADC tested. Noise up to 0.1 Hz better than 0.05

ppm rms: well within HL-LHC specs ©

Irradiation test of triplet cold by-pass diodes

- Cold diode irradiation cryostat installed in CHARM on 10.04.2018
- Two stacks of four diodes (77K, 4K), weekly measurement of forward characteristic up to 18 kA, turn on voltage, reverse blocking voltage and capacitance.
- Measurements to be continued until November (end of protons in injectors), expected to reach total ~ 10 kGy and ~ 2e14 1MeVneq/cm²
- Annealing tests will be performed after the end of the irradiation period

WP12: in-situ a-C coating system ready for LS2

- Fabrication of the coating system for the production in the tunnel during LS2.
- First coating in a real magnet with a beam screen already exposed to the LHC beam (SSS#243, removed from the LHC in LS1 and stored in air since then) With:
 - No impact on cold bore kapton insulation
 - No impact on button BPM response
 - Good adhesion
 - Maximal Secondary Electron Yield along the 6 meters: $<\delta_{max}> = 1.01 \pm 0.04$
- TE-VSC is ready for the coating campaign in LS2 (Q5 + Q6 in IR2R and IR8L)

Modular sputtering source

SSS#243 during coating

a-C deposition in SSS#243

Spools for the electrical and mechanical cables

WP14: first TDIS module tested in HiRadMat

- Full TDIS module tested under high intensity beam impact
- Test completed successfully on 24th August 2018
- Jaws tested for high impact parameters.
- Intensities/position producing equivalent thermal loads as HL beams
 - Impacts with 1.2E11 p/b x 288b → total intensity per pulse = 3.5E13 p
- Two different material options tested for the back-stiffener:
 - TZM (baseline)
 - Aluminium (back-up)
- Cooling circuit performed well → room temperature reached after ~10 min
- Post Irradiation Examinations to be performed soon...

