## Russia – BINP for HL-LHC



Budker Institute of Nuclear Physics, Novosibirsk, RUSSIA

**Eugene Levichev** 

8th HL-LHC Collaboration Meeting, CERN, 15-18 October 2018

### **Outline**

- BINP
- Opportunities for in-kind contribution
- 30 kA energy extraction system
- CCDTL for LINAC 4
- Hollow electron lens
- Vacuum chamber test facility
- Conclusion

### **BINP**



Budker Institute of Nuclear Physics established in 1958

Total staff ~2800 (~1000 scientists and engineers, ~1000 workshop personnel, ...)

Main activities: accelerators and colliders, HEP, synchrotron radiation, thermonuclear research

Large, experienced and wellequipped workshop (60,000 m<sup>2</sup>, 150 departments)

ISO9001:2015 Quality Management

## Opportunities for in-kind contributions

#### **BINP**

| Item                                                     | Estimated    | Required delivery                                       | Collaborator |
|----------------------------------------------------------|--------------|---------------------------------------------------------|--------------|
| D2 dipole orbit corrector magnets                        | 5 MCHF       | 2023; in time for installation in LS3 (2024-2025)       | BINP         |
| Magnets and CC jacks and controls                        | 0.3-0.5 MCHF | 2021-2022; in time for equipping magnets, CC, preseries | BINP         |
| Superconducting link feedboxes package                   | 5.6 MCHF     |                                                         |              |
| DFH 10 units                                             | 2.8 MCHF     | 2023; in time for installation in LS3 (2024-2025)       | BINP         |
| DFX 10 units                                             | 2.8 MCHF     | 2023; in time for installation in LS3 (2024-2025)       | BINP         |
| TAXN (in progress, Krasnov, Zolotarev)                   | 2.8 MCHF     | 2023; in time for installation in LS3 (2024-2025)       | BINP         |
| TAXS (in progress, Krasnov, Zolotarev)                   | 1.2 MCHF     | 2023; in time for installation in LS3 (2024-2025)       | BINP         |
| Current leads matching section 5 units                   | 1.55 MCHF    | 2023; in time for installation in LS3                   | BINP         |
| Current leads Inner Triplets 5 units                     | 5.1 MCHF     | 2023; in time for installation in LS3                   | BINP         |
| Collimation Package                                      | 20 MCHF      |                                                         |              |
| Part of secondary collimators (baseline)                 | 1.5 MCHF     | 2023; in time for installation in LS3                   | BINP         |
| TCLX Collimators (next to TAXN)                          | 2 MCHF       | 2023; in time for installation in LS3                   |              |
| Hollow electron lens for beam halo removal (A. Levichev) | 7-20 MCHF    | 2023; in time for installation in LS3 (2024-2025)       | BINP         |
| Second half of Crab Cavities                             | 24 MCHF      | 2029; in time for installation in LS4                   | BINP?        |

B. Di Girolamo

Red – work is close to the contract signing Blue – BINP potentially is ready to take

Main problem is who pays? Russia through in-kind or CERN directly?

## 30 kA energy extraction

30 κA energy extraction semiconductor switch designed and produced for cluster SM-18 (pre-series sample manufactured and successfully tested). Modular structure from 7.5 kA to 30 kA. We hope for the series production.







## **CCDTL for LINAC 4**

Linac4, a new 160 MeV Haccelerator will replace the 50 MeV proton Linac2 as an injector to the PS Booster.

#### **CCDTL features:**

- Separate accelerating cavities (tanks) with 2 drift tubes / tank,
- single cell off-axis coupling cavities (cells),
- 3. operates in the stable  $\pi/2$  mode,
- 4. Quads placed between the tanks.

#### **CCDTL advantages:**

- Small drift tube diameter ⇒ high RF efficiency.
- EMQs between the modules ⇒ flexibility for transverse beam dynamics.
- Quads can be aligned on the supports independently from the cavities ⇒ relaxed tolerances of the drift tube positioning.



### CCDTL for LINAC 4



During 2004-2014 BINP (Budker Institute of Nuclear Physics of Siberian Branch of Russian Academy of Sciences, Novosibirsk) and VNIITF (Russian Federal Nuclear Center – Russian Scientific Research Institute of Technical Physics, Snezhinsk) built 7 CCDTL modules for Linac4.

All modules were tested above the Linac4 specifications:  $\geq$  700 kW (which corresponds to 3.6 MV gap voltage per tank and peak surface field  $E_{Spk}$  = 34 MV/m that is 1.85 Kilpatrick) at 0.16% duty cycle (0.8 ms pulse length, 2 Hz repetition rate) and installed in the tunnel in 2016.

On 25 October 2016, Linac 4 reached its design beam energy of 160 MeV.



09/05/2017 Linac4 inauguration ceremony.

## TAXN & TAXS: scope

| Item                      | Mass x No | Slabs dims       | Work (wh) |
|---------------------------|-----------|------------------|-----------|
| TAXS lower part           | 1720 x 4  | 1800 x 500 ∅     | 180       |
| TAXS upper part           | 1276 x 4  | 1800 x 500 ∅     | 180       |
| TAXN (absorber block) bot | 1600 x 4  | 3819 x 400 x 170 | 180       |
| TAXN (absorber block) top | 1600 x 4  | 3819 x 400 x 170 | 180       |
| TAXS vacuum chamber       | x 4       |                  | 200       |
| Y chamber                 | x 4       |                  | 800       |

1 working hour (wh) ≈ 15 €

Total weight of row cupper slabs about 45 tons

Row cupper price about 10 €/kg

For vacuum chambers (and Y chambers) CERN provides cupper tubes







# TAXN & TAXS: questions/problems

Qs:

- Mechanical tolerance 100 µm seem excessive, is it possible to change it to 300-500 µm?
- Surface roughness 3 µm seems excessive.

#### No decision:

- TAXN grooves for cooling tubes. Who install the tubes, BINP?
- Who install the baking heaters, BINP?
- Who responsible for adjustment mechanics?
- Who responsible for assembling?

Ps:

- The production of every half of every absorber take about one working moth on the BINP milling machine, it can create problem for other BINP contracts.
- The procedure for purchasing of the long cupper slabs is not clear now.
- The technology for TAXS production isn't clear now.

For transportation 4 trucks are necessary. Total transportation cost is about 28 000 €.

The total cost of the contract about 1 350 000 CHF.

### Hollow electron lens

Study and simulation of the HEL e-beam dynamics.







### Hollow electron lens

- 1. HEL parameters were studied for a stable electron beam.
- 2. The aperture of vacuum tube of 60 mm and magnetic field of the main solenoid of 5 T are OK.
- 3. 5 A beam current with 15 kV with voltage are OK. The virtual cathode is not a problem.
- 4. The beam shape slightly changes in time but the field variation inside the beam is less than 5%.

All critical HEL parameters seem fixed.

# Vacuum surface coating

#### Addendum P110/A2

Study of photo-stimulated desorption and photoelectron emission of HL-LHC inner vacuum chamber surface under SR flux at room/cryo temperatures. A test beamline was developed at BEP storage ring (~10-1300 eV of critical energy, ~5·10<sup>16</sup> ph/m/s). In the first experimental set Cu and a-C (anti-multipactor) coating were compared.

### Experimental set up at BEP



Details in A.Krasnov's talk (Thursday)

### BEP storage ring



BEP after reconstruction. Maximum energy increased up to 1 GeV at circumference 22m. Max dipole field 2.6 T.

| Parameter                           | min    | nominal | max    |
|-------------------------------------|--------|---------|--------|
| E [MeV]                             | 200    | 300     | 900    |
| Beam current [A]                    | 0.5    | 0.5     | 0.5    |
| Banding magnet radii [mm]           | 1280   |         |        |
| SR critical energy [eV]             | 14     | 47      | 1260   |
| SR flux [ph/mrad/s]                 | 1.1E15 | 1.8E16  | 5.6E16 |
| SR power [W/mrad]                   | 0.009  | 0.045   | 3.6    |
| SR vertical divergence [mrad] at Ec | 2.5    | 1.7     | 0.56   |

# Results (example)

### Photo-desorption: amorphous carbon vs copper

|       | α-С        | Cu         | η(Cu1)/ |
|-------|------------|------------|---------|
| Ec eV | η [mol/ph] | η [mol/ph] | η(α-C)  |
| 12,5  | < 1,5E-5   | 3,2E-5     | -       |
| 25    | 2,7E-5     | 1,3E-4     | 5,0     |
| 50    | 5,1E-5     | 2,1E-4     | 4,2     |
| 100   | 1,5E-4     | 4,7E-4     | 3,1     |
| 200   | 2,3E-4     | 9,6E-4     | 4,1     |
| 400   | 5,8E-4     | 1,9E-3     | 3,2     |
| 800   | 1,5E-3     | 3,5E-3     | 2,3     |
| 1250  | 2,9E-3     | 4,6E-3     | 1,6     |



## Conclusion

- BINP actively participates in the HL-LHC program
- BINP has potential to increase efforts
- The main question is...

