IT quadrupoles: summary of test results

Paolo Ferracin and Giorgio Ambrosio
on behalf of the MQXF collaboration

8th HL-LHC Collaboration Meeting
17 October 2018
CERN
Acknowledgments

• **CERN**

• **BNL**
 - M. Anerella, P. Joshi, J. Muratore, J. Schmalzle, P. Wanderer

• **FNAL**

• **LBNL**
 - D. Cheng, M. Marchevsky, H. Pan, I. Pong, S. Prestemon, G. Sabbi, X. Wang

• **NHMFL**
 - Lance Cooley
Outline

• Introduction

• Assembly and loading

• Test results
Introduction

HiLumi low-β quadrupole MQXF

- **Target:** 132.6 T/m
 - 150 mm aperture, 11.4 T B_{peak}

- **Q1/Q3** (by AUP)
 - 2 magnets MQXFA with 4.2 m
 - Series: 20 magnets

- **Q2a/Q2b** (by CERN)
 - 1 magnet MQXFB with 7.15 m
 - Series: 10 magnets

- Different lengths, same design
 - Identical short models
Introduction

Tests
- **2 single-coil tests**
 - MQXFSM1 (1.2 m)
 - MQXFAM1 (4.0 m)
- **4 short models (1.2 m)**
 - MQXFS1
 - MQXFS3
 - MQXFS5
 - MQXFS4
- **2 MQXFA prototypes**
 - MQXFAP1 (4.0 m)
 - MQXFAP2 (4.2 m)

Assembly MQXFB prototype (7.15 m) in progress

Total of 31 coils “used”

Parameters of coil used in short models and prototypes

<table>
<thead>
<tr>
<th>Coil</th>
<th>Laboratory</th>
<th>Strand</th>
<th>Cross-section</th>
<th>L^5 (m)</th>
<th>Magnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>LARP/AUP</td>
<td>RRP 108/127</td>
<td>1st gen.</td>
<td>1.19</td>
<td>MQXFSM1</td>
</tr>
<tr>
<td>103</td>
<td>CERN</td>
<td>RRP 132/169</td>
<td>1st gen.</td>
<td>1.19</td>
<td>MQXFS1a-c</td>
</tr>
<tr>
<td>104</td>
<td>CERN</td>
<td>RRP 132/169</td>
<td>1st gen.</td>
<td>1.19</td>
<td>MQXFS1a-c</td>
</tr>
<tr>
<td>3</td>
<td>FNAL/BNL</td>
<td>RRP 108/127</td>
<td>1st gen.</td>
<td>1.19</td>
<td>MQXFS1a-c</td>
</tr>
<tr>
<td>5</td>
<td>FNAL/BNL</td>
<td>RRP 108/127</td>
<td>1st gen.</td>
<td>1.19</td>
<td>MQXFS1a-c</td>
</tr>
<tr>
<td>105</td>
<td>CERN</td>
<td>RRP 132/169</td>
<td>2nd gen.</td>
<td>1.19</td>
<td>MQXFS3e-c</td>
</tr>
<tr>
<td>106</td>
<td>CERN</td>
<td>RRP 132/169</td>
<td>2nd gen.</td>
<td>1.19</td>
<td>MQXFS3e-c</td>
</tr>
<tr>
<td>107</td>
<td>CERN</td>
<td>RRP 132/169</td>
<td>2nd gen.</td>
<td>1.19</td>
<td>MQXFS3e-c</td>
</tr>
<tr>
<td>7</td>
<td>FNAL</td>
<td>RRP 108/127</td>
<td>2nd gen.</td>
<td>1.19</td>
<td>MQXFS3a-t</td>
</tr>
<tr>
<td>8</td>
<td>FNAL/BNL</td>
<td>RRP 144/169</td>
<td>2nd gen.</td>
<td>1.19</td>
<td>MQXFS3c</td>
</tr>
<tr>
<td>203</td>
<td>CERN</td>
<td>PIT 192</td>
<td>2nd gen.</td>
<td>1.19</td>
<td>MQXFS5</td>
</tr>
<tr>
<td>204</td>
<td>CERN</td>
<td>PIT 192</td>
<td>2nd gen.</td>
<td>1.19</td>
<td>MQXFS5</td>
</tr>
<tr>
<td>205</td>
<td>CERN</td>
<td>PIT 192</td>
<td>2nd gen.</td>
<td>1.19</td>
<td>MQXFS5</td>
</tr>
<tr>
<td>206</td>
<td>CERN</td>
<td>PIT 192</td>
<td>2nd gen.</td>
<td>1.19</td>
<td>MQXFS5</td>
</tr>
<tr>
<td>108</td>
<td>CERN</td>
<td>RRP 108/127</td>
<td>2nd gen.</td>
<td>1.19</td>
<td>MQXFS4</td>
</tr>
<tr>
<td>109</td>
<td>CERN</td>
<td>RRP 108/127</td>
<td>2nd gen.</td>
<td>1.19</td>
<td>MQXFS4</td>
</tr>
<tr>
<td>110</td>
<td>CERN</td>
<td>RRP 108/127</td>
<td>2nd gen.</td>
<td>1.19</td>
<td>MQXFS4</td>
</tr>
<tr>
<td>111</td>
<td>CERN</td>
<td>RRP 108/127</td>
<td>2nd gen.</td>
<td>1.19</td>
<td>MQXFS4</td>
</tr>
<tr>
<td>QXFP01</td>
<td>FNAL/BNL</td>
<td>RRP 108/127</td>
<td>1st gen.</td>
<td>4.00</td>
<td>MQXFAM1</td>
</tr>
<tr>
<td>QXFP02</td>
<td>FNAL/BNL</td>
<td>RRP 132/169</td>
<td>1st gen.</td>
<td>4.00</td>
<td>MQXFAP1</td>
</tr>
<tr>
<td>QXFP03</td>
<td>FNAL</td>
<td>RRP 144/169</td>
<td>2nd gen.</td>
<td>4.00</td>
<td>MQXFAP1</td>
</tr>
<tr>
<td>QXFP04</td>
<td>FNAL/BNL</td>
<td>RRP 132/169</td>
<td>2nd gen.</td>
<td>4.00</td>
<td>MQXFAP1</td>
</tr>
<tr>
<td>QXFP05</td>
<td>FNAL</td>
<td>RRP 108/127</td>
<td>2nd gen.</td>
<td>4.00</td>
<td>MQXFAP1</td>
</tr>
<tr>
<td>QXFA101</td>
<td>FNAL</td>
<td>RRP 108/127</td>
<td>2nd gen.</td>
<td>4.20</td>
<td>MQXFAP2</td>
</tr>
<tr>
<td>QXFA102</td>
<td>FNAL/BNL</td>
<td>RRP 108/127</td>
<td>2nd gen.</td>
<td>4.20</td>
<td>MQXFAP2</td>
</tr>
<tr>
<td>QXFA104</td>
<td>FNAL</td>
<td>RRP 108/127</td>
<td>2nd gen.</td>
<td>4.20</td>
<td>MQXFAP2</td>
</tr>
<tr>
<td>QXFA105</td>
<td>FNAL/BNL</td>
<td>RRP 108/127</td>
<td>2nd gen.</td>
<td>4.20</td>
<td>MQXFAP2</td>
</tr>
<tr>
<td>104</td>
<td>CERN</td>
<td>RRP 108/127</td>
<td>2nd gen.</td>
<td>7.15</td>
<td>MQXFBP1</td>
</tr>
<tr>
<td>105</td>
<td>CERN</td>
<td>RRP 108/127</td>
<td>2nd gen.</td>
<td>7.15</td>
<td>MQXFBP1</td>
</tr>
<tr>
<td>107</td>
<td>CERN</td>
<td>RRP 108/127</td>
<td>2nd gen.</td>
<td>7.15</td>
<td>MQXFBP1</td>
</tr>
<tr>
<td>108</td>
<td>CERN</td>
<td>RRP 108/127</td>
<td>2nd gen.</td>
<td>7.15</td>
<td>MQXFBP1</td>
</tr>
</tbody>
</table>

Paolo Ferracin
Electrical tests

• Coil to QH (requirement)
 • 52 coils, tested in the range 2500-3700 V, all passed

• Coil to floating part (QC)
 • Coil to end-shoe
 • 2 MQXFA coils did not pass (binder issue)
 • Coil to pole
 • Weak insulation (from 20 to 800 MΩ) coil to pole in CERN coils
 • No issue for US coils except 1
Outline

- Introduction
- Assembly and loading
- Test results
MQXF mechanical structure
Room temperature pre-load

- Pole key – collars
 - from 0.100 interf to 0.200 mm gap.
- Coil pre-load
 - from -60 to -110 MPa
Pre-load after cool-down

• Different level of pre-load achieved
 • Low pre-load in MQXFS1a → unloading before I_{nom}
 • Full pre-load in MQXFS3s → unloading at I_{ult}
• Same approach axially

Paolo Ferracin
Outline

- Introduction
- Assembly and loading
- Test results
Test results
Single coil tests

- MQXFSM1, 1.2 m and MQXFAM1, 4.0 m
- Iron structure (“mirror”), load-line similar to MQXFS
- Successful validation of coil design and fabrication procedure → bout 87% of I_{ss}

Paolo Ferracin
Test results MQXFS1

- 1st generation coils, RRP 108/127 and 132/169
- MQXFS1a, then increase of azimuthal (MQXFS1b)
 - I_{ult} reached in all tests (some detraining quenches)
 - Up to 19 kA (highest current reached so far)
Test results
MQXFS1

• Then...
 • Increase of axial pre-load (MQXFS1c)
 • I_{ult} reached at 1.9 K and 4.2 K (some detraining and loss of memory)
Test results
MQXFS1

- Then…
 - Stainless steel shell welding (MQXFS1d)
 - Process demonstrated, limited pre-load increase at warm and no pre-load increase at cold
Test results
MQXFS3

- 2nd generation coils, RRP 108/127, 132/196, 144/169
- MQXFS3a
 - Degradation in end region of coil 7, bypassed at high ramp rates
- Then increase axial (MQXFS3b)
 - Better, but similar behavior
Test results
MQXFS3

- Then
 - Change of coil and increase azimuthal (MQXFS3c)
 - I_{ult} only at high ramp-rate \rightarrow limited by “old” coil (106)
- Interpretation: degradation triggering self-field instability
Test results
MQXFS3

- MQXFS3a assembled with pole key to collar interference
 - Major damage in pole key

![Graph showing pole key and no pole key stresses](image)

Paolo Ferracin
Test results
MQXFS5

- 2nd generation coils, PIT 192
 - “Nominal” pre-load
 - I_{ult} reached, both at 1.9 K and 4.5 K, with full memory
 - Change of slope during training
Test results
MQXFS4

- 2nd generation coils, RRP 108/127
 - “Nominal” pre-load
 - I_{ult} reached, both at 1.9 K and 4.5 K, with full memory
 - Fastest training

Paolo Ferracin
Test results
MQXFS4

- Then…
 - Insertion of cold bore and beam screen
 - Validation of process
 - No effect on magnet performance
MQXFAP1

- 1st generation coils, 4.0 m, RRP 108/127, 132/169, 144/169
- 3 thermal cycles for problems in cryogenic system
- I_{nom} reached, training stopped because of a short to ground caused by previous double-short QH to coil
MQXFAP1

• Short was caused by a series of events
 • Coil 5 impregnation was poor in the short area:
 • Increased possibility of helium trapped after cold test
 • Between quench 1 and 2, magnet hi-potted with high voltage (2.5 kV) at 293 K, after helium exposure
• Design weakness is excluded
MQXFAP2

- 2nd generation coils, 4.2 m, RRP 108/127
- Same pre-load as MQXFAP1
- Test in progress
Comparison/conclusions

• All short models and MQXAP1 reached I_{nom}
• 3 short models reached I_{ult}
 • MQXFS3 only at high ramp-rate and MQXFAP1 stopped by electrical short
• MQXFS4 fastest training (6 quenches to 85% of I_{ss})
Quench protection

- Inner layer quench heaters abandoned
 - Issue of delamination not solved
- Protection with outer layer QH and CLIQ
Next steps

• Assembly of MQXFBP1

• Assembly of MQXFS6: PIT with bundle
Appendix
Conductor and cable

- Two final strands
 - RRP 108/127 (MQXFA/B)
 - PIT 192 with bundle barrier (MQXFB)
- Also used
 - 132/169 and PIT without bundle barrier
- So, I_{nom} correspond to
 - 77% of I_{ss} for RRP
 - 79% of I_{ss} for PIT
- And I_{ult} \rightarrow 84-86%
- 1st and 2nd gen. cables
 - From 0.55° to 0.40° keystone angle

Paolo Ferracin
Field quality