

R&D on HFM (FRESCA2 & FCC)

Gijs de Rijk CERN

18th October 2018

Contents

- A bit of history
- The HL-LHC HFM era: going up to 12 T
- Optimizing the HL-LHC HFM technology: Fresca2
- FCC Nb₃Sn: moving up to 16T
- Shooting even higher: 20T with HTS

Superconducting accelerators magnets; the state of the art

- Maximum attainable field slowly approaches 16 T
 - 20% margin needed (80% on the load line):
 for a 16 T nominal field we need to design for 20 T

Available Superconductors

Nb-Ti: the workhorse for 4 to 10 T

Up to ~2500 A/mm² at 6 T and 4.2K or at 9 T and 1.9 K

Well known industrial process, good mechanical properties

Thousands of accelerator magnets have been built

10 T field in the coil is the practical limit at 1.9 K

Nb₃Sn: towards 20 T

Up to ~3000 A/mm² at 12 T and 4.2 K

25+ short models for accelerator magnets have been built

~20 T field in the coil is the practical limit at 1.9 K, but above 16 T coils will get very large

Current density is low, but very little dependence on the magnetic field

Used in solenoids (20T range), used in power lines – no accelerator magnets have been

built (only a few models) - small racetracks have been built

HFM pure development projects in Europe

- 2004-2008 CARE-NED → Nb₃Sn conductor, dipole design, insulation etc.
- 2009-2013 EuCARD-WP7 HFM → Fresca2, HTS insert, Current Link, Helical undulator, Rad studies and heat flow studies
- 2013-2017 EuCARD2 WP10 → ReBCO performance improvements, Roebel cable, Feather2 magnet, CosTh Roebel cable magnet (being built)
- 2017-2021 ARIES → ReBCO performance improvements

Vertical pad

Titanium central post

Horizontal keys

CERN-European development evolution on dipoles

FReSCa2 13T

G11 laminate

Aluminium shell

Aluminiu

m Shell

Longitudinal

Rods

Basic magnet technology development for HILUMI and beyond (2004-2013); US development evolution

History of LBNL and LARP Magnet Develop

Used bladder and key technology developed at LBNL

Oct 2018,

R&D on HFM, HL-LHC,

Basic HFM development: EuCARD high field dipole (Fresca2):

- Fresca2 : CERN, CEA construction phase
- First tests 2014

- 156 turns per pole
- Iron post
- $B_{center} = 13.0 \text{ T}$
- $I_{13T} = 10.7 \text{ kA}$
- $B_{peak} = 13.2 T$
- E_{mag} = 3.6 MJ/m
 L = 47mH/m

- Diameter Aperture = 100 mm
- L coils = 1.5 m
- L straight section = 700 mm
- L yoke = 1.6 m

Coil-wedge

• Diameter magnet = 1.03 m

Courtesy: A. Milanese, P. Manil, J-C Perez, P. Ferracin, F. Rondeaux,

M. Durante

Fabrication of Fresca2

Straightforward technology to wind block coils with flared ends:

This is a lesson for FCC magnets!

Test of the magnet

- Only short training to 13T@1.9K
- Record field 14.6T at higher pre-stress
- DC ops at 14.4T

Still some optimisations to do on coil manufacturing: where to slip and where not...

on HFM, HL-LHC,

HL-LHC: 11 T Dispersion suppressor magnet

- Present model program (CERN and FNAL)
 - demonstrated the required performance (11.25 T at 11850 A) and Achieved accelerator field quality

Nominal Field 11 T
Aperture diameter 60 mm
Peak Field 11.35 T
Current 11.85 kA
Loadline Margin 19.7% @ 1.9 K
Stored Energy 0.96 MJ/m

Quench #

HL-LHC: MQXF low beta Nb₃Sn quadrupole

Model have good performance, long prototypes are being fabricated

A CERN LARP collaboration.

Nominal Gradient 132.6 T/m

Aperture diameter 150 mm

Peak Field 12.1 T

Current 17.5 A

Loadline Margin 20% @ 1.9 K

Stored Energy 1.32 MJ/m

Courtesy P. Ferracin

FCC development

(2014 - ...)

LHC 27 km, 8.33 T 14 TeV (c.o.m.) HE-LHC 27 km, 20 T 33 TeV (c.o.m.) FCC-hh 80 km, 20 T 100 TeV (c.o.m.)

FCC-hh 100 km, 16 T 100 TeV (c.o.m.)

FCC Nb₃Sn performance targets

18 Oct 2018, GdR

R&D on HFM, HL-LHC,

FCC: 16T dipole options

EuroCirCol – detailed studies, quench

- Quench protection was integrated into the magnet design since an early state, using the same software tools under the same assumptions.
- All designs fulfill the required targets:
 - $T_{hot} < 350 \text{ K at } 105 \% I_{nom}$
 - V_{max}< 1.2 kV at 105 % I_{nom}

CLIQ has been selected as the baseline protection design.

US program lines

Nb₃Sn HFM development @ CERN

FRESCA2

OD = 1.03 m L = 1.6 m 100 mm Ap. $B_{op} = 13 \text{ T}$ $B_{ult} = 15 \text{ T}$

Large aperture

OD = Outer diameter

L = Magnet length

AP = Aperture

B_{ult}= Ultimate field, defined as the maximum design field for the magnet structure

16 T, CERN approach, go in steps

- 1 Extended Racetrack Model Coil, ERMC

First with one conductor, then with 2 different ones to optimise the coil: Grading 2 Racetrack Model Magnet, RMM

16 T program

- Subjects to be studied (@CERN or with collaborating institutes or industry)
 - Improved conductor (strand)
 - New large cable designs
 - Slip planes, detaching surfaces
 - Different epoxies
 - Insulation: Mica sleeves, glass-fibre socks, etc
 - Grading with internal Nb₃Sn Nb₃Sn splices
 - Quench protection (CLIC, QH etc.)
 - Mechanics
 - Prestress optimisation
 - Stress-strain function "elastic modulus" of coils
 - **–** ...

CERN

ERMC

winding

Coil before reaction

Coil after reaction Coil completed

First test ERMC after Dec 2018

Courtesy: S. Izquierdo

CERN

ERMC (dummy) assembly

Courtesy: S. Izquierdo

Assembly with dummy coils

Synergy programs

ISBN: 978-0-309-28634-3 30 T (NMR) to 60 T (user facilities) HTS solenoids

16 T LTS and 20 T HTS accelerator dipoles and associated technologies

US Magnet Development Program

 CCT technology and understanding has advanced through the development of two layer models

Issues with conductor damage have been resolved (CCT 4 reached 9.1 T (86% of SS limit)).

Next main focus is on training reduction

- Fabrication of a 15 T cos-theta demonstrator on progress.
 - Design and procurement completed.
 - Coil fabrication on-going.
 - Mechanical structure have been tested.
- Design studies for an "utility" structure on-going

HTS program: towards and beyond 20T

Thee main efforts:

Europe

CERN HTS program: using ReBCO tape conductor Collaborations being formed (eg. with CEA)

US

LBNL program: using Bi2223 round wire in Rutherford cable

Asia

Chinese SPPC magnet development program using Iron Based Superconductors (IBS) (See: Q. XU, TE-MSC Seminar, CERN, Oct 9 2018)

ReBCO Coated Conductor Tape

High Tc (93 K), High B_c&J_c @ 4.2K, J_c depends on B angle wrt tape

Substrates: 100, 50, 25 μm

(present) Cable options REBCO

Three cable option exist at the moment:

	Stacks	Twisted Stacks (TST)	Helically Twisted Stacks (HTST)	Conductor on Round Core (CORC)	Roebel
$J_E (A/mm^2)$	1000	400 (@16 T)	100 (@12 T)	360 (@ 17 T)	1000 (@ 20T)
$I_{OP}(kA)$	35	4 (@19 T)	1020	7 (@ 17 T)	10 (@ 10T)
ε(%)	as for tape	unknown	unknown	+0.60.7	unknown
σ (MPa)	as for tape	unknown	unknown	> 300	> 400?(*)

HTS: First attempt towards 20 T

6 T HTS (YBCO) insert for test in

Fresca2, to get to 19 T But without bore

CEA + CRNS Grenoble

J.M. Rey, F. Borgnolutti, M. Durante, CEA-Saclay

Stand alone tested Sept 2017: Reached 5.37 T @ 4.2K (I=3200A) Next test mid 2019 inside Fresca2

GdR

EuCARD2 5T accelerator quality ReBCO magnet

5 Tesla stand alone, (18 T in 13 T background), @ 4.5K, 40 mm aperture, 10 kA class cable, Accelerator Field quality

Feather2 Magnet assembly

Feather-M2.0 test results

HTS magnets work differently than LTS magnets due to a larger enthalpy

margin.

CERN 20T program

Program aiming at a 20T model by 2023-ish

- Build up on experience with the Feather models
- Define other intermediate steps based on what we experience

<u>20T</u>

- Start from basics
- Build up models also taking care of the conductor availability
- Be open to all types of cables

Spread the technology

- Participate, take initiatives for other magnet types
 - Novel gantry design
 - ASI space spectrometer
 - Compaclight wiggler

Fig. 8. Conceptual cross-sectional mechanical design to coil layout 5 in Table I).

Fig. 10. Illustration showing the three-dimensional coil layouts with the three different coil-end types that are considered. The cross-section of these coils correspond exactly to coil layout 5 in Table I.

CERN HTS program plan (planning phase)

Conclusions

- Over the last 15 years we went from the 8T (LHC) to the 12T (HL-LHC) domain
- The next challenge is 16T with Nb₃Sn
- Meanwhile we shoot far ahead with HTS on the +20T scale
- The effort runs on 3 continents in "collaborative competion"

Lots of fun ahead!

