R\&D on HFM (FRESCA2 \& FCC)

Gijs de Rijk

 CERN$18^{\text {th }}$ October 2018

Contents

- A bit of history
- The HL-LHC HFM era : going up to 12 T
- Optimizing the HL-LHC HFM technology: Fresca2
- $\operatorname{FCC~} \mathrm{Nb}_{3} \mathrm{Sn}$: moving up to 16 T
- Shooting even higher : 20T with HTS

Superconducting accelerators magnets; the state of the art

- Maximum attainable field slowly approaches 16 T
- 20% margin needed (80% on the load line): for a 16 T nominal field we need to design for 20 T

Available Superconductors

Nb-Ti: the workhorse for 4 to 10 T Up to $\sim 2500 \mathrm{~A} / \mathrm{mm}^{2}$ at 6 T and 4.2 K or at 9 T and 1.9 K

Well known industrial process, good mechanical properties
Thousands of accelerator magnets have been built
10 T field in the coil is the practical limit at 1.9 K

$\mathrm{Nb}_{3} \mathrm{Sn}$: towards 20 T

Up to $\sim 3000 \mathrm{~A} / \mathrm{mm}^{2}$ at 12 T and 4.2 K

Complex industrial process, higher cost, brittle and strain sensitive 25+ short models for accelerator magnets have been built
~20 T field in the coil is the practical limit at 1.9 K , but above 16 T coils will get very large
HTS materials: dreaming 40 T (Bi-2212, YBCO)
Current density is low, but very little dependence on the magnetic field Used in solenoids (20T range), used in power lines - no accelerator magnets have been built (only a few models) - small racetracks have been built

HFM pure development projects in Europe

- 2004-2008 CARE-NED $\rightarrow \mathrm{Nb}_{3} \mathrm{Sn}$ conductor, dipole design, insulation etc.
- 2009-2013 EuCARD-WP7 HFM \rightarrow Fresca2, HTS insert, Current Link, Helical undulator, Rad studies and heat flow studies
- 2013-2017 EuCARD2 WP10 \rightarrow ReBCO performance improvements, Roebel cable, Feather2 magnet, CosTh Roebel cable magnet (being built)
- 2017-2021 ARIES \rightarrow ReBCO performance improvements

CERN-European development evolution on dipoles

SMC (Short Model Coil)

11 T dipole (CERN)

RMC (Racetrack Model Coil)
FReSCa2

Basic magnet technology development for HILUMI and beyond (2004-2013) ; US development evolution

History of LBNL and LARP Magnet Develop

Used bladder and key technology developed at LBNL

Basic HFM development : EuCARD high field dipole (Fresca2):

- Fresca2 : CERN, CEA construction phase
- First tests 2014

R\&D on HFM,HL-LHC, 18 Oct 2018, GdR

- 156 turns per pole
- Iron post
- $\mathrm{B}_{\text {center }}=13.0 \mathrm{~T}$
- $\mathrm{I}_{13 \mathrm{~T}}=10.7 \mathrm{kA}$
- $B_{\text {peak }}=13.2 \mathrm{~T}$
- $E_{\text {mag }}=3.6 \mathrm{MJ} / \mathrm{m}$
- $\mathrm{L}=47 \mathrm{mH} / \mathrm{m}$

- Diameter Aperture $=100 \mathrm{~mm}$
- L coils $=1.5 \mathrm{~m}$
- L straight section $=700 \mathrm{~mm}$
- L yoke $=1.6 \mathrm{~m}$
- Diameter magnet $=1.03 \mathrm{~m}$

P. Manil, J-C Perez, P. Ferracin, F. Rondeaux, M. Durante

Straightforward technology to wind block coils with flared ends:
This is a lesson for FCC magnets !

Test of the magnet

- Only short training to 13T@1.9K
- Record field 14.6T at higher pre-stress
- DC ops at 14.4T

Still some optimisations to do on coil manufacturing: where to slip and where not...

- First Nb3Sn magnet to go into an accelerator (2019) !
- Present model program (CERN and FNAL)
- demonstrated the required performance (11.25 T at 11850 A) and Achieved accelerator field quality

Nominal Field 11 T Aperture diameter 60 mm Peak Field 11.35 T
Current 11.85 kA
Loadline Margin 19.7\% @ 1.9 K

Stored Energy 0.96 MJ 14000 $/ m$

Quench current (A)

\rightarrow MBHSP101

- MBHSP102
-O-MBHSP103
--MBHDP101
- MBHSP104
-OMBHSP105
--MBHDP102
- MBHSP106 at 4.5 K
- MBHSP106 at 1.9 K
\triangle-MBHSP107

Courtesy F. Savary

HL-LHC: MQXF low beta $\mathrm{Nb}_{3} \mathrm{Sn}$ quadrupole

Model have good performance, long prototypes are being fabricated

A CERN LARP collaboration.
Nominal Gradient 132.6 T/m
Aperture diameter 150 mm
Peak Field 12.1 T
Current 17.5 A
Loadline Margin 20\% @ 1.9 K
Stored Energy 1.32 MJ/m

Geneva

LHC

FCC $\mathrm{Nb}_{3} \mathrm{Sn}$ performance targets

EuroCirCol - detailed studies, quench

- Quench protection was integrated into the magnet design since an early state, using the same software tools under the same assumptions.
- All designs fulfill the required targets:
- $\mathrm{T}_{\text {hot }}<350 \mathrm{~K}$ at $105 \% \mathrm{I}_{\text {nom }}$
- $\quad \mathrm{V}_{\max }<1.2 \mathrm{kV}$ at $105 \% \mathrm{I}_{\text {nom }}$

CLIQ has been selected as the baseline protection design.

US program lines

$\mathrm{Nb}_{3} \mathrm{Sn}$ HFM development @ CERN

OD = Outer diameter
L = Magnet length
AP = Aperture
$\mathrm{B}_{\mathrm{ult}}=$ Ultimate field, defined as the maximum design field for the magnet structure

FRESCA2

$$
\begin{gathered}
\mathrm{OD}=1.03 \mathrm{~m} \\
\mathrm{~L}=1.6 \mathrm{~m} \\
100 \mathrm{~mm} \mathrm{Ap} . \\
\mathrm{B}_{\text {op }}=13 \mathrm{~T} \\
\mathrm{~B}_{\text {ult }}=15 \mathrm{~T}
\end{gathered}
$$

Large aperture

Courtesy S. Izquierdo, P. Ferracin, J-C. Perez

16 T, CERN approach , go in steps

1 Extended Racetrack Model Coil , ERMC 2 Racetrack Model Magnet, RMM 3 Demonstrator, DEMO

«First test ERMC Dec 2018

First with one conductor , then with 2 different ones to optimise the coil: Grading

16 T program

- Subjects to be studied (@CERN or with collaborating institutes or industry)
- Improved conductor (strand)
- New large cable designs
- Slip planes, detaching surfaces
- Different epoxies
- Insulation: Mica sleeves, glass-fibre socks, etc
- Grading with internal $\mathrm{Nb}_{3} \mathrm{Sn}-\mathrm{Nb}_{3} \mathrm{Sn}$ splices
- Quench protection (CLIC, QH etc)
- Mechanics
- Prestress optimisation
- Stress-strain function "elastic modulus" of coils

winding

Coil before reaction

Coil after reaction Coil completed

Courtesy: S. Izquierdo

Structure with dummy coils now in SM18 for mechanical validation tests at cold

Courtesy: S. Izquierdo

Synergy programs

16 T LTS and 20 T HTS accelerator dipoles and associated technologies

ISBN: 978-0-309-28634-3
30 T (NMR) to 60 T (user facilities) HTS solenoids

The U.S. Magnet
Development Program Plan

By courtesy of S. Gourlay (LBNL) 23

US Magnet Development Program

- CCT technology and understanding has advanced through the development of two layer models
- Issues with conductor damage have been resolved (CCT 4 reached 9.1 T (86% of SS limit)).
- Next main focus is on training reduction

Fabrication of a 15 T cos-theta demonstrator on progress.

- Design and procurement completed.
- Coil fabrication on-going.
- Mechanical structure have been tested.
- Design studies for an "utility" structure on-going

HTS program: towards and beyond 20T

Thee main efforts:

- Europe

CERN HTS program : using ReBCO tape conductor
Collaborations being formed (eg. with CEA)

- US

LBNL program: using Bi2223 round wire in Rutherford cable

- Asia

Chinese SPPC magnet development program using Iron Based
Superconductors (IBS) (See: Q. XU, TE-MSC Seminar, CERN, Oct 9 2018)

ReBCO Coated Conductor Tape

High Tc $(93 \mathrm{~K})$, High $\mathrm{B}_{\mathrm{c}} \& \mathrm{~J}_{\mathrm{c}} @ 4.2 \mathrm{~K}, \mathrm{~J}_{\mathrm{c}}$ depends on B angle wrt tape

Substrates:
Courtesy J van Nugteren 100, 50, $25 \mu \mathrm{~m}$

(present) Cable options REBCO

Three cable option exist at the moment:

	Stacks	Twisted Stacks (TST)	Helically Twisted Stacks (HTST)	Conductor on Round Core (CORC)	Roebel

6 T HTS (YBCO) insert for test in Fresca2, to get to 19 T But without bore

Stand alone tested Sept 2017:
Reached 5.37 T @ 4.2K (I=3200A) Next test mid 2019 inside Fresca2

EuCARD2 5T accelerator quality ReBCO magnet

5 Tesla stand alone, (18 T in 13 T background), @ 4.5K, 40 mm aperture, 10 kA class cable, Accelerator Field quality

HTS magnets work differently than LTS magnets due to a larger enthalpy

Feather-M2.0 test results

 margin.Feather-M2.1-2 (SuperOx, Sunam) EuCARD2// Future Magnets -

CERN 20T program

Program aiming at a 20T model by 2023-ish

- Build up on experience with the Feather models
- Define other intermediate steps based on what we experience

20T

- Start from basics
- Build up models also taking care of the conductor availability
- Be open to all types of cables

Fig. 8. Conceptual cross-sectional mechanical desi

Spread the technology

- Participate, take initiatives for other magnet types
- Novel gantry design
- ASI space spectrometer
- Compaclight wiggler

Fig. 10. Illustration showing the three-dimensional coil layouts with the three different coil-end types that are considered. The cross-section of these coils correspond exactly to coil layout 5 in Table

Courtesy J. van Nugteren, G. Kirby

CERN HTS program plan (planning phase)

Conclusions

- Over the last 15 years we went from the 8T (LHC) to the 12 T (HL-LHC) domain
- The next challenge is 16 T with $\mathrm{Nb}_{3} \mathrm{Sn}$
- Meanwhile we shoot far ahead with HTS on the +20T scale
- The effort runs on 3 continents in "collaborative competion"

Lots of fun ahead!

