

WP13 – Beam Instrumentation, Long-Range Beam-Beam Compensation & Electron Beam Test Stand

Status and Plans

Rhodri Jones (CERN BEAM INSTRUMENTATION GROUP)

8th HL-LHC Collaboration Meeting, CERN, Geneva. 15-18 October 2018.

Scope of WP13

- Upgraded Beam Instrumentation for HL-LHC
- Long-Range Beam-Beam Compensation
 - Studies leading to proof of concept
 - Design study for possible final implementation
- Electron Beam Test Stand
 - Construction and operation of test stand at CERN
 - Coordination of e-beam simulations

Task	Description
13.2	Cryogenic BLMs & Radiation Hard BLM Electronics
13.3	New BPMs Q1 to Q5 with dedicated electronics
13.4	Luminosity Monitors
13.5	High Bandwidth Transverse Pick-ups
13.6	Upgrade to Synchrotron Light Monitor
13.7	Beam Gas Vertex Detector
13.8	Long Range Beam-Beam Compensator Studies
13.9	Electron Beam Test Stand

th HL-LHC Collaboration Meeting, CERN, Oct 2018

Beam Loss Monitoring

Need for cryogenic BLMs removed

- Updated simulations including addition of tungsten shielding and latest magnet geometries show no advantage over standard BLMs for all realistic loss scenarios
- Radiation Hard ASIC development
 - Collaboration with EP-ESE-ME
 - Two fully functional custom chips being developed to evaluate performance of two different architectures:
 - Current to Frequency Converter
 - Better for large currents & quickly varying signals
 - Delta-Sigma
 - High accuracy due to oversampling & filtering
 - Aim to test first prototypes before end 2019

Beam Position Monitors for the New Interaction Region Layouts in Point 1 and 5

- New BPMs foreseen from Q1 to Q4
 - 24 cold directional stripline BPMs for Q1-D1 regions
 - 4 warm directional stripline BPMs for after D1
 - 8 warm button BPMs in front of D2 (or inside D2)
- Challenges
 - Directivity of stripline BPMs to measure both beams
 - Complex design including tungsten absorbers for collision debris and active cooling with liquid helium
 - Collaboration with WP 3,9,10,12,15
- Status
 - Layout optimised
 - All BPMs located away from parasitic encounters
 - Initial design completed for tungsten shielded BPM

New BPMs for HL-LHC IP1/5

- Major integration effort in 2018 in collaboration with WP 3,12,15
- BPM prototype production launched
- Starting large procurement of tungsten absorbers (with WP12) and cryogenic RF feedthroughs
- String Test BPM validation campaign planned
- Internal Review of Design held in May 2018
 - Highlighted 20 actions to be followed-up

8th HL-LHC Collaboration Meeting, CERN, Oct 2018

Luminosity Monitors

IP1 & IP5

- Currently
 - Gas ionisation detectors housed in TAN
 - Degrading & need to be replaced for HL-LHC
- Proposal
 - Replace with Cherenkov detectors in TAXN
 - Investigate Cherenkov light in quartz & air

Status

- Proof of concept prototypes installed in 2016
 - Continued testing with beam since 2016
 - To be considered
 - Remote handling, vacuum bakeout, motorisation

Luminosity Monitors

Cherenkov in air

- 80% loss in light yield for first 55 fb⁻¹ in 2018
- Not a feasible option in current state

Aluminum mirror

Fused Silica Rods after 1-2 years of LHC operation

- Loss in UV-region but visible region intact
- Promising candidate for final solution

Wavelength (nm)

800

1000

2M1

Tube

Air gap

е±, ч, р

Beam Gas Vertex Detector

Aim

- Use tracks from beam-gas interactions to reconstruct beam spot in a noninvasive way
- Provide bunch-by-bunch size with a 5% resolution within 1 minute
 - Demonstrator aims at 5% within 5 minutes
- Provide average beam size with absolute accuracy of 2% within 1 minute
 - Demonstrator aims at 10% within 5 minutes
- Demonstrator
 - Collaboration with Aachen University, EPFL & LHCb
 - Installed during LS1 on Beam 2
 - In test since 2016

Beam Gas Vertex Detector

- Demonstrator has achieved its goal
 - Shown feasibility of beam size measurement from vertex reconstruction
 - Achieved real-time track reconstruction & analysis
 - Demonstrated statistical accuracy within specifications
 - Systematic effects still to be fully understood

Measurement throughout the ramp

CERN

8th HI

Comparison with wirescanners

Beam Gas Vertex Detector – The Future

- Project recently approved construction of two final version BGV Detectors for HL-LHC
- Material budget study & detector technology comparison ongoing
 - Four candidates under evaluation:
 - Gaseous GEM/Micromegas
 - Silicon detectors
 - Scintillating fibers
 - Readout & online processing using BI standard acquisition system & adapted detector ASIC
 - Development of pattern recognition algorithms adapted to new sensor technology
- Review of all beam size measurement systems in 2019
 - Decision on technology to use for final HL-LHC systems

10

Development of High Bandwidth BPMs

- Important for understanding instabilities
 - Electron cloud, impedance, beam-beam, ...
- Also essential for crab cavity diagnostics
- Currently based on head-tail monitor
 - Installed & recently upgraded in both SPS and LHC

11

Development of High Bandwidth BPMs

- Development of more sensitive, higher bandwidth system
 - Collaboration with Royal Holloway University London (RHUL) HL-UK
- Prototype electro-optical pick-up installed in SPS
 - Upgraded for 2018 with compact fibre-optic interferometer design
- Next steps
 - Improve pick-up sensitivity with LiNbO₃ waveguides & better acquisition system

Working Point Scan Rotation of laser polarisation by electro-magnetic field of circulating bunch

Gas Curtain Monitor

- Aims to provide a non-invasive method of aligning electron beam devices with the proton beam
 - E.g. hollow electron lens
- Gas sheet in combination with luminescence
- Collaboration partners
 - Cockcroft/University of Liverpool for hardware prototyping
 - GSI for the luminescence detection
 - TE-VSC & Wroclaw University for gas jet simulations
 - EN-MME for nozzle manufacture

13

Gas Curtain Monitor

- Testing at Cockcroft
 - New test station designed, installed & commissioned
 - First tests with Nitrogen & Neon
 - Demonstrated gas jet formation
 - Validated optical system for luminescence detection

CERN

Gas Curtain Monitor

Demonstrating feasibility for LHC

- Installation of fluorescence test station in 2018
 - Tests with Neon gas volume (not curtain) with high intensity/energy beams
 - Cross-section expected to be very low for protons
 - Tests ongoing no luminescence seen yet high background from losses & SR
- Installation of full "compact" prototype instrument during LS2
 - Will allow complete system validation during Run 3

Long Range Beam-Beam Compensation

Status

- Full set of wire-in-jaw collimators installed for B2 2000
- One either side of IR1 & 5

MD#2

Wire layout

Efficiency of wires in IR5 confirmed with improvement of lifetime for bunches suffering longrange interactions

300 250

200

150

100

50

- Wire reduces losses to burn-off level
- Crossing angle reduced during test
- Down to 130 urad, still observing compensation!

MD#4 – still to come

2 wires powered in parallel per collimator

Future

Design of HL compatible device started,

Progress with other WP13 Tasks

- Upgrade of synchrotron light diagnostics
 - New halo monitor will be installed in LS2
 - Collaboration with KEK
 - Aim to demonstrate contrast of 10⁻⁵
 - D4 exit in LSS4 identified for new light extraction line
 - Design of extraction tank & optics to start in 2019
- Beam position system electronics
 - Large scale consolidation launched for LHC BPM system
 - Funded by consolidation project, R2E & HL-LHC
 - Will address requirements for HL-LHC final focus in IR1 & 5
- Electron beam test stand
 - To test components for possible hollow electron lens
 - Installation ongoing
 - Accompanied by e-beam simulations (collaboration with BINP)

Summary

- LHC constructed with comprehensive suite of beam diagnostic devices
 - These play an important role in its safe & reliable operation
- HL-LHC will push the performance of LHC even further
 - Requires a deep understanding of beam related phenomena
 - Can only be delivered through its beam instrumentation
- Significant progress made on all tasks thanks to our many collaborators
 - Aachen University (Germany)
 - ARIES (EU)
 - BINP (Russia)
 - CERN EP Department
 - EPFL (Switzerland)
 - FNAL (US-LARP)
 - GSI (Germany)
 - KEK (Japan),
 - LHCb (CERN)
 - Royal Holloway University of London (UK)
 - Wroclaw University (Poland)
 - University of Liverpool (UK)

8th HL-LHC Collaboration Meeting, CERN, Oct 2018