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SPS-CCs

logo
area

SPS BA6 infrastructure (2/2)

� The loop delay LLRF-TX-Cavity-LLRF will be similar in 
the LHC implementation (1.5-2.5 us), we can simulate 
different loop delays

7

Routing ∼ 150𝑚 in length

Space on Surface (200 𝑚ଶ)

Faraday cage 
platform

Faraday Cage

• Crab cavities are in the SPS tunnel underneath the 
faraday cage 

• LLRF controls are located in Faraday Cage at BA6. 

(Details are in Philippe’s talk)

LLRF SPS-CCs
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• Induced cavity amplitude after the M-th turns without compensation of beam loading:

! * J. Tuckmantel, Cavity-Beam-Transmitter Interaction Formula Collection with Derivation, CERN-ATS-Note-2011-002, 2011    
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If the series in Eq. 9 is summed to the M-th term, Eq. 9 becomes
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A time-varying generator current to compensate full beam loading is derived from Eq. 3
as
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with �

e

= 0 [7]. A total transmitter power for each bunch is then calculated by
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where Q

e

is the external Q-value and J0 is the nominal generator current without beam
loading compensation given by
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If the series in Eq. 9 is summed to the M-th term, Eq. 9 becomes
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A time-varying generator current to compensate full beam loading is derived from Eq. 3
as
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= 0 [7]. A total transmitter power for each bunch is then calculated by
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where Q

e

is the external Q-value and J0 is the nominal generator current without beam
loading compensation given by
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Figure 3: Horizontal orbit displacement in the crab cavity according to the long-range beam-
beam e↵ect.

J0 =
V0

2(R/Q)Q
L

. (13)

with nominal crab voltage V0.

3 Beam loading due to long-range beam-beam inter-

actions

Figure 3 presents the horizontal orbit o↵sets in the HL-LHC crab cavity caused by a long-
range beam-beam interactions. The induced crabbing voltage according to these displace-
ments is calculated by Python Scipy package using Eq. 7. Figure 4 plots the induced voltage
in the crab cavity over 100 turns. The equilibrium induced voltage at 100 turns is also cal-
culated using Eq. 10 and shown in Fig. 5. The peak amplitude of induced voltage is about
2.4 kV which is about 0.1 % of nominal crab voltage (3.4 MV). The parameters for HL-LHC
crab cavity are summarized in Tab. 2.

Table 2: The HL-LHC crab cavity parameters.
Parameter Value

Nominal crab voltage (V0) 3.4 MV/cavity
Shunt impedance (R/Q) 420 ⌦
Loaded Q-value (Q

L

) 5⇥105

Time constant (⌧) 397 µs
RF frequency of crab cavity (F

rf

) 400.79 MHz

Figure 6 plots a variation of total demanded RF power in the HL-LHC crab cavity.
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a coherent beam oscillation (injection oscillation) and there is a transverse bunch o↵set in
the crab cavity.

This paper analyzes a beam loading in the HL-LHC crab cavity caused by transverse
orbit displacements according to a long-range beam-beam interaction and an injection beam
oscillation, respectively.

2 Analytical solution of transient beam loading in the

crab cavity

A complex cavity voltage [7] is given by

V (t) = A(t) exp(i!t), (2)

where ! is the angler frequency of the crab cavity and A(t) is the complex cavity amplitude.
A transient generator current to control beam loading in the crab cavity is derived as
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where (R/Q) is the shunt impedance, Q
L

is the loaded Q, c is the speed of light, x(t) is the
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where T

b

is the equal bunch spacing in time, q is the proton charge and n

p

is the number of
protons per bunch. Under the condition of �! = 0 and �

elec

= 0 [7] in Eq. 3, a di↵erential
equation of complex cavity amplitude for zero compensation of beam loading is
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A time-varying generator current to compensate full beam loading is derived from Eq. 3
as
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where Q

e

is the external Q-value and J0 is the nominal generator current without beam
loading compensation given by
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Beam loading measured in the SPS-CCs

a coherent beam oscillation (injection oscillation) and there is a transverse bunch o↵set in
the crab cavity.

This paper analyzes a beam loading in the HL-LHC crab cavity caused by transverse
orbit displacements according to a long-range beam-beam interaction and an injection beam
oscillation, respectively.

2 Analytical solution of transient beam loading in the

crab cavity

A complex cavity voltage [7] is given by

V (t) = A(t) exp(i!t), (2)

where ! is the angler frequency of the crab cavity and A(t) is the complex cavity amplitude.
A transient generator current to control beam loading in the crab cavity is derived as
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where (R/Q) is the shunt impedance, Q
L

is the loaded Q, c is the speed of light, x(t) is the
transverse bunch o↵set, F

b

is the bunch form factor and I
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is the DC beam current given
by
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beam.
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where T

b

is the equal bunch spacing in time, q is the proton charge and n

p

is the number of
protons per bunch. Under the condition of �! = 0 and �

elec

= 0 [7] in Eq. 3, a di↵erential
equation of complex cavity amplitude for zero compensation of beam loading is
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• Power (Pg) required to compensate full beam loading 
(A(t)=0 in Eq.1)

4

• DC beam current is bunch intensity averaged over one 25ns period. (LLRF cannot 
regulate microstructure beam loading that is harmonics of 40 MHz.)

(Eq.1)
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Bunch Spacing Tb 25 ns
available bunch number Nb 924

Bunch intensity Np 1.0⇥1011

RF frequency @ 26GeVfRF 400.5288 MHz
Bunch length (4�) 3.0 ns

Bunching factor Fb (@26GeV) 0.17
Ib,DC 0.64 A

R/Q (circuit-ohm) 210
QL 500,000

Time constant ⌧ 397 us

Table 1: SPS-CCs parameters

Bunch Spacing Tb 25 ns
available bunch number Nb 3564

Bunch intensity Np 2.3⇥1011

RF frequency fRF 400.789 MHz
Bunch length (4�) 1.2 ns

Bunching factor Fb (@7TeV) 0.75
Ib,DC 1.47 A

CC voltage Vcc 3.4 MV
R/Q (circuit-ohm) 210

QL 500,000
Time constant ⌧ 397 us

Table 2: HL-LHC parameters
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Beam loading measured in the SPS-CCs
• 10th October MD 

- 12bx1, 12bx2, 12bx3, 12bx4, 24bx2, 24bx3, 24bx4, 36bx1, 36bx4, 48bx1, 48bx2 
- Beam trajectory is offset from the closed orbit in SPS-CCs locally : ±10 mm (measured by BPM)  

• Setup measurements 
Both cavies are turned off -> cavity field is Zero 
Reading ANT signal to measure beam induced voltage in the CCs 
ANT amplitude (averaged over 5 seconds) is plotted with respect to the offsets. -> Calibration and 
attenuation due to the cavity not being tuned perfectly, corrected. 
97.6 kHz sampling and 5.3 s time window. TX

Beam
CC#1 CC#2BPM

Circulator

Directional 
Couplar

Directional 
Couplar

Obs.  Mem.
Demodulated Data

RF Fdbk LOOP

Drive

CAVLOOP

ANT2

PU

Ic,Fwd
TUNER LOOP

Ic,Rev

Ig,Fwd

ANT1

Ic,Fwd

PU
ANT1

ANT2

TUNER

Distance btw two CCs : 0.6m
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Beam loading measured in the SPS-CCs
• Calculations 

• Bunch filling scheme - initial bucket for each batch is fixed at 1/81/161/241. 

• Calculated induced voltage is averaged over one turn.
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Calculation

-14.6off=12.0*XindV
+17.1off=-17.8*XindV

off=-19.7*XindV
off=19.7*XindV

Orbit Scan, 24bx2

• Electric centre of cavities are +1.06 mm for both cavities. 

• Calculation plot is shifted to the estimated electrical centre (in the figure). 

• There is an asymmetry in measured data between negative and positive offsets 
(why?).



Beam loading measured in the SPS-CCs
• 36bx1, 36bx2, 36bx4 at 0 mm, intensity scan 

Induced voltage is linearly increasing with beam intensity.
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80
-3.3b=0.6*NindV

Crab1, 36bunches, 0mm Offset
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Content
• Beam loading measured in the SPS-CCs 

• HL-LHC beam loading calculations 

• Long-range beam-beam effect 

• Injection oscillation 

• Microphonics measured in the SPS-CCs 

• Ponderomotive instability observed in the SPS-CCs 

• Conclusions
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HL-LHC beam loading calculations!
due to the Long-Range Beam-Beam

• Generator power required to compensate full beam loading due to LRBB is small.
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Driving term (P0) = 13.8 kW 
(Vcc=3.4MV)
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Bunch Spacing Tb 25 ns
available bunch number Nb 924

Bunch intensity Np 1.0⇥1011

RF frequency @ 26GeVfRF 400.5288 MHz
Bunch length (4�) 3.0 ns

Bunching factor Fb (@26GeV) 0.17
Ib,DC 0.64 A

R/Q (circuit-ohm) 210
QL 500,000

Time constant ⌧ 397 us

Table 1: SPS-CCs parameters

Bunch Spacing Tb 25 ns
available bunch number Nb 3564

Bunch intensity Np 2.3⇥1011

RF frequency fRF 400.789 MHz
Bunch length (4�) 1.2 ns

Bunching factor Fb (@7TeV) 0.75
Ib,DC 1.47 A

CC voltage Vcc 3.4 MV
R/Q (circuit-ohm) 210

QL 500,000
Time constant ⌧ 397 us

Table 2: HL-LHC parameters
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• Injection mismatch causes injection beam oscillations along the ring -> 
Orbit offset in the CC. 
• Apply simulation to calculate transverse offsets and induced voltage in the 

CCs using PyTRACK

• Single particle tracking 
• Injection offset at IP1 is at 0.35mm in 

horizontal 
• Injection optics (HLLHCV1.3) 
• φadv (between CC and CCant): 220deg 

• 4 CCs: 2 x crabbing, 2 x anti-crabbing (IP5) 
• Nominal CC voltage: 0 V 
• Induced voltage is computed every time 

the particle enters the CCs 
• Assuming all the bunches follow the 

same orbit  
• Filling: one batch only (the other batches 

assumed to be circulating on the closed 
orbit) 

HL-LHC beam loading calculations!
due to the injection oscillation

10



HL-LHC beam loading calculations!
due to the injection oscillation

• Demanded power to compensate full beam 
loading is 26 kW maximum. 

11

Induced crab voltage over 190 turns w/o beam loading 
compensation

Generator power required to compensate full beam 
loading over 190 turns.

Particle offset in CCs over 190 turns computed by 
PyTRACK 



But, injection offsets will be damped by ADT 

Figure 8: Horizontal orbit displacements in the HL-LHC crab cavities over 190 turns. CC1
and CC2 are the first and second crabbing cavities at upstream of IP5. anti-CC1 and anti-
CC2 are anti-crabbing cavities at downstream of IP5.

power exceeds the power limit of klystron (40 kW) [6] for the nominal HL-LHC operational
scenario. In the case of average beam current over one SPS-batch, the demanded RF power
is decreased by 7.7 % as shown in Fig. 10 (Green trace), but the demanded power is still
beyond the limit.

To mitigate required power without upgrades of entire system of RF power chain, a
fast transverse damper [5] will be used to damp the injection oscillation in the HL-LHC.
In the simulation, a simple damping scheme is considered and installed around the IP4. A
horizontal momentum kick (�x

0) at the transverse damper is calculated by using horizontal
positions of the particle (x

BPM

) at the Beam Position Monitor (BPM) on the Quadrupole
Magnet (Q7),

�x

0 = �g · xBPM

m12
(14)

where m12 is the (1,2) element of the 6⇥ 6 inverse transfer matrix describing the transform-
ation of particle trajectory from PU to ADT and g is the feedback gain defined by

g =
2T

rev

T

d

(15)

where T

rev

is the revolution period and T

d

= 10T
rev

[6] is the damping time.
Figure 11 plots the orbit o↵sets in the crab cavities with transverse damper. The injection

oscillations for CC1 and CC2 are damped less than 1 mm in 10 revolution periods which
is consistent to the design value. The amplitude of induced voltage in each crab cavity is
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• Horizontal transverse damper is applied in the calculation. 
• Momentum kick (Δx’) at ADT is computed using BPM (xBPM) at quad. magnet (Q7).

m12: inverse transfer matrix from BPM to ADT
Td:10xTrev

• Required generator power is acceptable (14kW) when using transverse damping system.
12

Induced crab voltage over 100 turns w/o beam loading 
compensation

Generator power required to compensate full beam loading over 
100 turns.
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• Conclusions
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• Sampling frequency: 97.7 kHz 
• Recording time window: 5.3 s
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• RF FDBK is OFF: michrophonics modes measured in the ANT 
• RF FDBK is ON: michrophonics modes measured in the Ic,Fwd



Microphonics in Crab1

• 20-30 Hz: Cryo-pump 
• 49 Hz: TX high voltage ripples 

(50Hz)+ Tuner mode 
(Mechanical 47.7Hz) 

• 74 Hz: Mechanical mode 
(78.5) 

• 98 Hz: Harmonics of TX high 
voltage ripples 

• 171 Hz: Not identified 
• 195 Hz: could be harmonics of 

TX high voltage ripples 
• 210 Hz: Mechanical mode 

(209Hz) 
• 342 Hz: Not identified (could 

be TX high voltage ripples)

15



Microphonics in Crab2
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• 20-30 Hz: Cryo-pump 
• 49 Hz: TX high voltage ripples 

(50Hz) + Tuner mode 
(Mechanical 47.7Hz) 

• 73 Hz: Mechanical mode (78.5) 
• 98 Hz: Harmonics of TX high 

voltage ripples  
• 172 Hz: Not identified 
• 212 Hz: Mechanical mode 

(209Hz) 
• 342 Hz: Not identified (could be 

harmonics of TX high voltage 
ripples)



Fig1. ANT  (800kV) Fig2. ANT (1.9MV)

• The oscillation is not seen in the ANT when the cavity field is below 1 MV. (Fig.1, FDBK is OFF). 

• When the cavity voltage is above 1 MV, we observe huge oscillations (210 Hz) in the ANT. (Fig.2, FDBK 
is OFF).

17

Ponderomotive instabilities measured in SPS-CCs



PONDEROMOTIVE INSTABILITIES AND MICROPHONICS –
A TUTORIAL* 

J. R. Delayen#, Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

Abstract 
Phase and amplitude stabilization of the fields in 

superconducting cavities in the presence of 
ponderomotive effects and microphonics was one of the 
major challenges that had to be surmounted in order to 
make superconducting rf accelerators practical.  This was 
of particular concern in low-velocity proton and ion 
accelerators since the beam loading was often negligible, 
but was usually not relevant in electron accelerators since 
the beam loading was often high and the gradients low.  
More recent or future applications of electron linacs – for 
example JLab upgrade, energy recovering linacs (ERLs)   
– will operate at increasingly higher gradients with little 
beam loading, and the issues associated with 
microphonics and ponderomotive instabilities will again 
become relevant areas of research.  This paper will 
describe the ponderomotive instabilities and the 
conditions under which they can occur, and review the 
methods by which they, and microphonics, can be 
overcome. 

HISTORICAL BACKGROUND 
Ponderomotive instabilities were first observed in 

normal conducting resonators in the 1960s in the Soviet 
Union [1-3].  In that work stability conditions were 
derived using energetic arguments, comparing the rate of 
transfer of energy from the electromagnetic mode to the 
mechanical mode and the rate of dissipation of energy of 
the mechanical mode.  The analysis was valid when the 
decay time of the electromagnetic mode was much less 
that the period of the mechanical mode ( 1µτ Ω � ), or 
when the rate of transfer of energy was very high. 

In the late 60s early 70s, as part of the R&D activities at 
Karlsruhe toward the development of a superconducting 
proton accelerator, Schulze [4,5] extended the analysis of 
ponderomotive instabilities in generator-driven systems, 
with and without phase and amplitude feedback, to 
arbitrary µτ Ω , which would be appropriate for 
superconducting structures.  His analysis was based on 
control system methods (Laplace transforms, transfer 
functions, etc.).  That work made first mention and 
demonstrated the effectiveness of using ponderomotive 
effects to damp mechanical modes. 

In the mid 70s, as part of the R&D activities at Caltech 
toward the development of a heavy-ion superconducting 
accelerator, Delayen [6,7] analyzed the behavior of 
resonators operated in self-excited loops, with and 
without phase and amplitude feedback, in the presence of 

ponderomotive effects and microphonics.  That analysis 
was also based on control systems methods and made use 
of stochastic analysis to quantify the performance of the 
feedback systems.  That work also introduced the I/Q 
control method as well as microprocessor-based control 
systems for superconducting cavities. 

THE ADIABATIC THEOREM AND 
SUPERCONDUCTING CAVITIES 

An important theorem of classical mechanics states that 
for periodic system whose properties change slowly with 
time (as defined by a slowness parameter ε ) the action 
J p dqv Ô  changes more slowly than a power of ε .  
When applied to harmonics oscillators – where the action 
is /U ω , the ratio of energy and frequency– then /U ω  

changes more slowly than any power of 2

1 d
dt
ωε

ω
  if the 

frequency changes smoothly, i.e. it is an adiabatic 
invariant to all orders [8].  The dimensionless parameter 
ε is the relative change in frequency during one radian.  
Since in the case of superconducting cavities it would be 
difficult to change the frequency significantly during one 
radian, the action /U ω  can be assumed to be constant 
and, in particular, any relative change in frequency is 
equal to any relative change in energy content: 

U
U

ω
ω

∆ ∆
 .   

In the quantum picture, this would mean that the system 
stays in the same eigenstate and that the number of 
photons remains constant ( U N ω= ). 

The energy content in a resonator is given by 

 2 20 0( ) ( )
4 4V

U dv H r E rµ εG GË Û �Ì ÜÍ ÝÔ , (1) 

and the change in energy content is equal to the work 
done by the radiation pressure: 

 2 20 0( ) ( ) ( ) ( )
4 4S

U dS n r r H r E rµ εξ∆
GG G G G G< Ë Û � �Ì ÜÍ ÝÔ  (2) 

where ( )n r
G G and ( )rξ

G G  are the normal vector and the 
displacement vector, respectively, at location rG . 

The relative change in frequency is then given by 

 
2 20 0

2 20 0

( ) ( ) ( ) ( )
4 4

( ) ( )
4 4

S

V

dS n r r H r E r

dv H r E r

µ εξω
µ εω

∆
GG G G G G<

G G

Ë Û�Ì ÜÍ Ý �
Ë Û�Ì ÜÍ Ý

Ô

Ô
, (3) 

which, in microwave engineering, is known as Slater’s 
formula [9]. 

___________________________________________  

* Work supported by the U.S. Department of Energy under contract 
DE-AC05-84-ER40150. 
#delayen@jlab.org. 
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• The same (ponderomotive) oscillation has been observed in the HIE-Isolde 
QWR cavities and LEP* (around 100Hz) at CERN.

The cavity should be on tune precisely at each 
time when the cavity voltage is changed (> 1MV).

ANT
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resonances (30-40 Hz) and a more complicated response
above 150 Hz.
The striking result of this analysis, made for a large
number of cavities, is that the frequency of the
modulation peak exactly corresponds to one of the two
resonance peaks of that particular cavity.   The spread of
the two mechanical resonances, as observed on a dozen
cavities is from 86 Hz (lowest peak) to 110 Hz (highest
peak).

3  ANALYSIS
It is known that in high field superconducting cavities
the resonance frequency of the cavity depends slightly
upon the RF field.   One mechanism is via the Lorentz
force (radiation 'pressure') which deforms mechanically
the cavity walls. There may be other effects,
thermomechanical ones, in the helium bath for instance,
linked to the cavity wall’s dissipation.
We tried to measure this effect by deliberately
modulating in amplitude the cavity field, through the
klystron drive, and observing the corresponding cavity
detuning on the tuner loop phase detector.   The cavity
must be on tune (no phase offset) and the klystron phase
loop turned on.   This ensures that the forward power to
the cavity is amplitude-modulated only, without parasitic
phase modulation.
The result is displayed in Fig. 1, bottom curve. Indeed
there is a non-zero transfer function, from amplitude
modulation to cavity tune, with peaks corresponding to
the mechanical resonances of the cavity. The static
detuning, as a function of field, has also been measured
in a phase-locked loop configuration.   The component
proportional to V2 (Å 35-70 Hz at 6 MV/m) corresponds
approximately to the magnitude of the low-frequency
part of the Fig. 1 curve.   It can be observed that the
magnitude of the transfer function increases with the
average cavity field, as expected, and that in the Nyquist
diagram the two circles corresponding to the two
resonances around 100 Hz and the low-frequency part of
the curve lie in two opposite half planes.   This suggests
an instability mechanism, not present (or controlled by
the servo tuner) at low frequency (0-10 Hz), but
appearing around 100 Hz where the transfer function is
large (mechanical resonances) and its sign changed.

This type of oscillations has been examined already
by [3][4]. We use here the transfer function between
tune- and field amplitude modulation  Gx,a(s) as function
of  the Laplace parameter s [5] - depending on the
detuning angle φz  - and the response of the mechanical
cavity-resonator, yielding a 4th order polynomial in s
[6]. The real parts of the four complex solutions
represent the growth rates, a positive real part
corresponding to a self-exciting instability.

The only undetermined parameter in this polynomial,
the mechanical attenuation Qm , can be deduced to be
about 20 from the mechanical transfer function in Fig. 1.

The 'worst' of the four real parts - representing the
dominant effect - has been plotted for different cavity
fields in Fig. 2. We see that with negative tuning angles
φz == 0  (automatically introduced by the tuning system
when the beam current increases) for 2 MV/m there is
(nearly) everywhere stability, for 4 MV/m already a
large range is unstable and for 6 MV/m - the design field
- there remains only a very small stable region close to
φz == 0 .
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Fig. 2: Growth rates [s-1] as function ofφz[deg] for
three different cavity field levels. The chosen parameters
match the actual conditions of the LEP2 sc. cavities

4  CORRECTION
This instability is intrinsic to the cavity physical
properties (mechanical, thermal);  it could be suppressed
by controlling the cavity voltage via the RF power
generator (amplitude feedback, RF feedback).
Unfortunately in the LEP case one klystron drives eight
cavities and cannot be used to suppress the (incoherent)
modulations of all cavities.
Another approach is to use the magnetostrictive tuner to
provide a tune variation opposite to that naturally
induced in the cavity.   In this feedforward technique the
cavity voltage modulation, properly filtered, is re-
injected via the magnetostrictive current of the tuner
(Fig. 3).

In an experiment made in the cavity test set-up a
reduction by about 10 dB of the most dangerous peak
was achieved, and the instability threshold pushed
further up. Nonetheless this method is delicate
(amplitude and phase control of the re-injected signal)
and of limited efficiency:  other instability frequencies
appeared above 150 Hz when the field was raised. It
implies that the two transfer functions of Fig. 1 are
almost identical, which is not exactly the case.
For particularly dangerous mechanical resonances, one
could use active damping by selective feedback around
the resonance frequency. One or possibly several parallel
feedback paths corresponding to the cavity resonances to
be damped, would parallel the usual servo tuner

ELECTROACOUSTIC OSCILLATIONS IN THE LEP SC. CAVITIES

D. Boussard, P.Brown, J. Tückmantel, CERN, Geneva, Switzerland

Abstract

The LEP superconducting cavities have been
plagued by electroacoustic oscillations. Tests have been
done to eliminate these by a special feed-back loop in
the tuning circuit as well as a feed-forward path, but they
could only be eliminated safely up to the design field by
running the cavities close to tune neglecting beam-
loading compensation. This technique proved successful
during the first LEP2 test run at 70 GeV. The
mechanism and essential parameters driving these
oscillations have been analysed as well as the
corresponding stronger loading of the power coupler.

1  OBSERVATIONS IN LEP
A strong modulation of the cavity RF voltage has been
observed on some of the modules operating in LEP.   In
some dramatic cases the amplitude modulation is as high
as about 50%, even at an average field below 4 MV/m.
This effect, which was not observed during cavity testing
prior to installation, manifests itself only when beam is
present, and is clearly linked to beam intensity. It goes
without saying that such a strong modulation appearing
on one cavity of a unit (two modules driven by a
common klystron) will impose a reduction of the
operating field of all eight cavities of the unit, and
jeopardise the future LEP2 operation [1].

The amplitude modulation of the RF voltage always
corresponds to a phase modulation, as observed on the
phase detector of the tuning loop, leading to the
suspicion that a tune modulation of the cavity could be
at the origin of the problem.

Analysis of the frequency spectra of the observed
signals revealed a number of frequency lines in the
vicinity  of 100 Hz.  Spectra taken with very low RF
field in the cavities and without beam, also show peaks
which can be attributed to an external excitation by
cryogenics. The presence of mechanical excitation of the
cavity from outside at precise frequencies does not
explain, however, the other lines appearing in the
spectrum when beam is present, which in some cases
largely dominate.   In the following we shall only
consider the lines which do not correspond to an external
excitation of the cavity by the cryogenic system.

2  EXPERIMENTAL OBSERVATIONS
During LEP operation with beam, the cavities are

detuned to compensate the reactive part of beam loading
in such a way that cavity voltage and forward power are
in phase. In the case of LEP the detuning angle φz  is
always negative. Cavity detuning introduces a relation

between small tune modulations and cavity voltage
modulations, which could explain the observed
coherence between phase and amplitude signals. In a
LEP machine  experiment, we changed the phase of the
RF drive as compared to the beam, so as to put the
cavity voltage and beam current in phase (bunches ride
on the crest of the wave of that particular unit).   The
modulations were reduced by a large factor (> 20 dB)
showing that cavity detuning (and not the presence of
the beam) was responsible for the effect. This was
confirmed by a counter experiment in the cavity test set-
up where a cavity was deliberately detuned (± 45° offset
in the phase detector of the tuning loop), the result being
a strong phase and amplitude modulation (up to 80%)
observed with a negative offset. We have checked that
the negative offset corresponds to a cavity detuning of
the same sign as that induced by the LEP beam current.
Even with the tuning servo loop disabled, the
modulation appeared when the (drifting) cavity tune
wandered in a region of negative detuning, showing that
this was not an effect due to the tuning loop.

The mechanical resonances of the cavity (at least
those leading to a tune modulation) can be analysed in
situ by exciting the cavity via the magnetostrictive tuner
bars. A typical transfer function is displayed by the top
curve in Fig. 1.
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Fig. 1: Transfer functions [dB] versus frequency [Hz]:
   • top:      Magnetostrictive current -> phase
   • bottom: Cavity voltage -> phase

 It shows the amplitude ratio of cavity frequency
modulation (measured on the tuner loop phase detector)
and magnetostrictive current. The low-frequency part
corresponds to the action of the servo tuner which keeps
the cavity in tune against outside excitations. The two
main mechanical resonances of the cavity (95 Hz and
107 Hz), already predicted by simulations [2], are
observed, together with the weaker transverse

Ponderomotive instabilities measured in SPS-CCs



• To close the RF FDBK, we need to tune 
the cavity precisely. 

• When the RF FDBK is closed, FDBK 
stabilises the cavity field (no more 
problem of ponderomotive oscillation. The 
210Hz mechanical mode is just seen as 
very small modulation sidebands (Fig.3)). 

Fig3. ANT: 1600kV, RF FDBK is ON
19
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Lorentz Force Detuning,
Non-Linear = measurement problem
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LFD is -350 Hz/MV2 (crab1),  -390 Hz/MV2 (crab2)!
measured at SM18.

When the cavity field is close to 1 MV, the detuning 
frequency is about one cavity bandwidth, that is the 
worst case for ponderomotive oscillation (-400Hz). !

Ponderomotive instabilities measured in SPS-CCs



Conclusions
• Beam loading has been measured in the SPS-CCs. Measurements are in 

reasonable agreement with the calculation. Further analysis is necessary. 

• Beam loading due to the LRBB and injection oscillation in HL-LHC CCs is 
computed. For LRBB the required power is negligible. For Injection oscillation, 
it peaks at 26kW without ADT down to 14kW with ADT. 

• Microphonics modes have been identified in the SPS-CCs 

• Fluctuation of cryo-pressure, TX high voltage ripple and several mechanical 
modes. 

• Ponderomotive oscillations have been observed around 210 Hz in the SPS-CCs 

• They are completely damped when operating exactly on tune or with RF 
FDBK ON.
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