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Motivation

➢ We observe that our predictions of stability threshold are usually off by a factor 2 with respect to measurements

→ In the LHC, this minimum margin required to operate reliably is acceptable thanks to the strong 
octupoles installed

→ In the HL-LHC, mitigations are put in place to maintain this margin (low impedance collimators, enhanced 
tune spread using the ATS optics)
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Motivation

➢ We observe that our predictions of stability threshold are usually off by a factor 2 with respect to measurements

→ In the LHC, this minimum margin required to operate reliably is acceptable thanks to the strong 
octupoles installed

→ In the HL-LHC, mitigations are put in place to maintain this margin (low impedance collimators, enhanced 
tune spread using the ATS optics)

➢ The direct measurements of the impedance do not show such a 
discrepancy

→ The scaling is somewhat arbitrary since the cause of the 
discrepancy is unknown
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Instability latency

➢ On few occasions, one of the LHC beam was left steady (non-
colliding), leading to an instability after a long latency

Fill 5664, 2017

➢ To our best 
knowledge, these 
instability cannot be 
explained with 
machine or beam 
parameter variations



logo
area

Measured thresold vs. operational threshold

➢ Performing fast octupole scans (~1 
minute per step), the measured 
threshold matched the prediction

➢ Yet during the operation, the required 
octupole current was >2 times larger !

L. Carver, et al. 
IPAC2016
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➢ Performing slow octupole scans (~10 
minutes per step), the threshold were 
found >2 larger than the prediction

➢ The threshold found in octupole scan 
matched to the one needed in 
operation
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Measured thresold vs. operational threshold

➢ Performing fast octupole scans (~1 
minute per step), the measured 
threshold matched the prediction

➢ Yet during the operation, the required 
octupole current was >2 times larger !

L. Carver, et al. 
IPAC2016

D. Amorim, 
et al.

➢ Performing slow octupole scans (~10 
minutes per step), the threshold were 
found >2 larger than the prediction

➢ The threshold found in octupole scan 
matched to the one needed in 
operation

→ Even without understanding of the mechanism, it is clear that 
the latency plays an important role in the instability threshold
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(wide spectrum)
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Postulating a mechanism

* X. Buffat, PhD thesis, EPFL, 2015
** S.V. Furuseth, HSC meeting, 23.04.2018

Beam oscillations
→ Coherent mode Q

coh

Coherent forces (wake fields)

(driven oscillation at Q
coh

)
Steady external excitation

(wide spectrum)

Diffusion of the particles driven 
by the coherent force

Q(J
x
,J

y
) = Q

coh

Modification of the
particle distribution

Loss of Landau damping
Driven by Diffusion*

(L2D2)

➢ New analytical models are under development to describe this phenomenon**
→ Today we address this mechanism through multiparticle tracking simulations, 
including a tune spread and an external noise source
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Loss of Landau damping driven by diffusion

➢ The diffusion of the particles resonant with 
the coherent force is visible in the action 
density profiles
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Loss of Landau damping driven by diffusion

➢ The diffusion of the particles resonant with 
the coherent force is visible in the action 
density profiles

➢ In physical space, this changes is 
averaged out → The effect is too weak to 
be directly measurable in the beam profile

Watch the full diffusion process here!

https://indico.cern.ch/event/742082/contributions/3084844/attachments/1733747/2803288/profiles.gif
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Noise amplitude

➢ Numerical setup (COMBI) :

– Linear transfer map with transverse amplitude 
detuning (octupoles) and chromaticity

– Perfect damper
– Wake fields
– Gaussian white (constant over the bunch length) 

transverse noise with r.m.s. amplitude δ
– The latency is measured based on the transition 

from linear to exponential growth of the emittance
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Noise amplitude

➢ Numerical setup (COMBI) :

– Linear transfer map with transverse amplitude 
detuning (octupoles) and chromaticity

– Perfect damper
– Wake fields
– Gaussian white (constant over the bunch length) 

transverse noise with r.m.s. amplitude δ
– The latency is measured based on the transition 

from linear to exponential growth of the emittance
→ Average and error bars based on 10 simulations 
with different random seeds

➢ Numerical simulations are limited by 
there intrinsic noise

→ Realistic latencies (several minutes – millions of 
turns) are at the limit of the computational power 
available (on HPC machines)

Numerical
noise limit
(5∙105 macro particles/bunch)
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Octupole strength

➢ With the following parameter set, the 
expected threshold (w/o noise) is 190 A

Parameter Value

LHC cycle phase Flat top (6.5 TeV)

Nb bunches 1

Bunch intensity 1.2∙1011

Emittance 2 μrad

Bunch length 1.05 ns
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Octupole strength

➢ With the following parameter set, the 
expected threshold (w/o noise) is 190 A

(Above the noiseless 
threshold)➢ Even for current a factor 2 

larger than needed without 
noise, latencies of several 
minutes are expected

Parameter Value

LHC cycle phase Flat top (6.5 TeV)

Nb bunches 1

Bunch intensity 1.2∙1011

Emittance 2 μrad

Bunch length 1.05 ns
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➢ In the configuration considered, the 
stability threshold is almost 
independent of the gain in the high-
gain regime
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Damper gain

➢ In the configuration considered, the 
stability threshold is almost 
independent of the gain in the high-
gain regime

➢ An ideal transverse feedback 
mitigates the effect of the 
noise, leading to longer 
latencies
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Extrapolations

COMBI LHC flat top 
(single non-
colliding bunch)

I
oct

 [A] 300 2*190

Gain 0.02 0.005

δ [σ] 3∙10-3 6∙10-5

Latency [min] 1.7
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Extrapolations

COMBI LHC flat top 
(single non-
colliding bunch)

I
oct

 [A] 300 2*190

Gain 0.02 0.005

δ [σ] 3∙10-3 6∙10-5

Latency [min] 1.7

CERN-ACC-NOTE-2018-0036
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Extrapolations

➢ The extrapolation is compatible with the few events of very long latencies and the time spent 
at flat top (squeeze)

COMBI LHC flat top 
(single non-
colliding bunch)

I
oct

 [A] 300 2*190

Gain 0.02 0.005

δ [σ] 3∙10-3 6∙10-5

Latency [min] 1.7 43

Fill 5664, 2017



logo
area

Extrapolations

➢ The extrapolation is compatible with the few events of very long latencies and the time spent 
at flat top (squeeze)

➢ In these conditions, in order to explain a factor 2 within 10 minutes, a noise amplitude of 
2.6·10-4 is needed

→ Further analysis is needed (dependence on chromaticity, proximity of the tune to noise lines, collision / injection 
tunes, ...)

COMBI LHC flat top 
(single non-
colliding bunch)

I
oct

 [A] 300 2*190

Gain 0.02 0.005

δ [σ] 3∙10-3 6∙10-5

Latency [min] 1.7 43

Fill 5664, 2017
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Expected benefit of the ADT pickup electronic upgrade

➢ With the current pickups, the 
beneficial effect of the ADT is 
saturating due to its own noise

➢ With a large gain (50 turns) an 
increase of the latency by a factor 1.9 
is expected for the new low noise 
pickup electronics for the ADT

→ To be verified experimentally (MD4)

Current pickups
New pickups
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Experimental test with artificial noise

➢ The direct measurement of the distortion of the stability diagram through beam transfer 
function remains a challenge*** → A novel experimental approach was needed to 
study this phenomenon

*** C. Tambasco, PhD thesis, EPFL, 2017
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Experimental test with artificial noise

Noise on

➢ Different bunches circulating 
simultaneously in the machine 
experience Gaussian white 
noise of different amplitudes

➢ Bunches experiencing a 
higher noise amplitude 
became unstable first

→ First evidence of instabilities 
driven by an external source of 
noise in a controlled experiment

➢ The direct measurement of the distortion of the stability diagram through beam transfer 
function remains a challenge*** → A novel experimental approach was needed to 
study this phenomenon

*** C. Tambasco, PhD thesis, EPFL, 2017

S.V. Furuseth
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Octupole and chromaticity scans

➢ As expected the latency increases with the octupole current, quantitative comparison to be 
finalised
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Octupole and chromaticity scans

➢ As expected the latency increases with the octupole current, quantitative comparison to be 
finalised

➢ The effect of the chromaticity remains to be understood, with Q'~0 the beam is unstable 
without additional noise
– Is it due to a stronger sensitivity to the machine noise, or another mechanism ?
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Conclusion
➢ External sources of noise can significantly compromise the beam stability, with latencies 

of several minutes
– In dynamical processes (e.g. collapse of the separation bumps), the noise does not impact the required stability margin 

if the latency is longer than the process (see backup)

➢ The effect of an external source of noise on the beam stability observed in simulation 
could be reproduced in dedicated experimental studies at the LHC
– Some observations remain to be understood (see backup)

➢ The postulated mechanism L2D2 couldn't be verified with BTF measurements up to now

➢ New theoretical developments are ongoing, they are needed to gain confidence in the 
extrapolation to HL-LHC, in particular to :
– Confirm that the low-noise pickup upgrade of the ADT is sufficient to ensure the beam stability in the HL-LHC

– Verify that the current tolerances for the noise amplitude of new devices are sufficient not to jeopardise the beam 
stability

– Possibly determine optimal settings to minimise this effect (chromaticity, ADT gain / filter algorithm, process length, 
tune,  ...)
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Damper gain scan

➢ With a lower ADT gain, 
the latencies were longer
– Only the bunches with strongest 

noise became unstable in a 
reasonable amount of time

➢ This feature is not 
compatible with 
simulations and remains 
to be understood

Noise on Noise off
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Separation scans (In collaboration with S. Fartoukh)

Based on the stability diagram of 
PACMAN bunches (MAD'n'PySSD + DELPHI)
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Separation scans (In collaboration with S. Fartoukh)

➢ When colliding with an offset at the IP (in the MD configuration) the PACMAN bunches are expected to loss 
Landau damping around 1.5 σ

➢ Crossing this unstable configuration did not lead to an instability with the maximum bump speed
➢ The instability is visible only when performing a slow scan (→ luminosity levelling)

Based on the stability diagram of 
PACMAN bunches (MAD'n'PySSD + DELPHI)
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