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> We observe that our predictions of stability threshold are usually off by a factor 2 with respect to measurements

— In the LHC, this minimum margin required to operate reliably is acceptable thanks to the strong
octupoles installed

— In the HL-LHC, mitigations are put in place to maintain this margin (low impedance collimators, enhanced
tune spread using the ATS optics)
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HiLum Y (@)
HL-LHC PROJECT



w’"‘“‘m % Landau dﬁﬂll]lﬂg {l\n ﬁvg Linear conpling

&u\i‘\?ﬂ \3\\\@‘5:\ g Q{{S@\J\eﬂe QJLIZ(:? d £ 0)%‘7

RS Ge

Motivation

-\\‘b‘b&\ QJQ/’- , %"wﬁ%

g . {{}]m[m chond 40/-.
cﬁﬂl\ Q [hromaticity ;
\ QJ ’ (pace charge % (9.{0

&v W Mode e ] |,y||snh|‘\
\l@ 070 Machine lmpedanee “f‘?? chrm“““““

" Tlectron clo d

ADT bandwidth [.['ab C&V

é”

“%; an aU Q \, Head-cm beam-beam
\ &ECU‘OH cloud dJaL,mh lng ................. a}@’ _ QJ@ QhYOmat lc,\t.’s.
d nal dlSU’l Utlon ¥ \ml..ni it
il L‘,?nglt;;m;e couphng 1nsta_hlhw | h o \,{a,bl].l[‘\- dmgl‘am \ g lDT 9' am
: %M_@“ﬁ? ﬂ (\8\(’“"“ 1 \“‘N L{\P‘ ity 82 e
" Space charge \a““

> We observe that our predictions of stability threshold are usually off by a factor 2 with respect to measurements

— In the LHC, this minimum margin required to operate reliably is acceptable thanks to the strong
octupoles installed

— In the HL-LHC, mitigations are put in place to maintain this margin (low impedance collimators, enhanced
tune spread using the ATS optics)

> The direct measurements of the impedance do not show such a
discrepancy

iLUMi ’ C\E{W — The scaling is somewhat arbitrary since the cause of the
— > discrepancy is unknown



Instability latency

> On few occasions, one of the LHC beam was left steady (non-
colliding), leading to an instability after a long latency

Timeseries Chart between 2017-05-16 16:55:55.149 and 2017-05-16 18:28:16.797 ( Fil| 5664, 2017
—= LHC.BOFSLICOFSU_EMERGY - LHC.BQEEQCONTINUCUS_HS BL:EIGEN_AMPL_1

> To our best
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/ . Instability cannot be
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Measured thresold vs. operational threshold
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> Performing fast octupole scans (~1
minute per step), the measured
threshold matched the prediction

> Yet during the operation, the required
octupole current was >2 times larger !
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> Performing fast octupole scans (~1 > Performing slow octupole scans (~10
minute per step), the measured minutes per step), the threshold were
threshold matched the prediction found >2 larger than the prediction

> Yet during the operation, the required > The threshold found in octupole scan

matched to the one needed in
operation

_/—7 CE/RW — Even without understanding of the mechanism, it is clear that
e /Y  the latency plays an important role in the instability threshold

octupole current was >2 times larger !




Postulating a mechanism
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Postulating a mechanism

> New analytical models are under development to describe this phenomenon**

— Today we address this mechanism through multiparticle tracking simulations,
including a tune spread and an external noise source

liL J’ G« X Buffat, PhD thesis, EPFL, 2015

> ** S. V. Furuseth, HSC meeting, 23.04.2018



Loss of Landau damping driven by diffusion
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Loss of Landau damping driven by diffusion
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Loss of Landau damping driven by diffusion
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Loss of Landau damping driven by diffusion
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Loss of Landau damping driven by diffusion
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Loss of Landau damping driven by diffusion
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The break fade analogy
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Noise amplitude

Numerical setup (COMBI) :

Linear transfer map with transverse amplitude
detuning (octupoles) and chromaticity

Perfect damper
Wake fields

Gaussian white (constant over the bunch length)
transverse noise with r.m.s. amplitude &

The latency is measured based on the transition
from linear to exponential growth of the emittance
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Noise amplitude

Numerical setup (COMBI) :

- Linear transfer map with transverse amplitude
detuning (octupoles) and chromaticity

- Perfect damper
- Wake fields

- Gaussian white (constant over the bunch length)
transverse noise with r.m.s. amplitude &

- The latency is measured based on the transition
from linear to exponential growth of the emittance
— Average and error bars based on 10 simulations
with different random seeds
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Noise amplitude

Numerical setup (COMBI) :

Linear transfer map with transverse amplitude
detuning (octupoles) and chromaticity

Perfect damper
Wake fields

Gaussian white (constant over the bunch length)
transverse noise with r.m.s. amplitude &

The latency is measured based on the transition
from linear to exponential growth of the emittance

— Average and error bars based on 10 simulations
with different random seeds
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Noise amplitude

Numerical setup (COMBI) :

Linear transfer map with transverse amplitude
detuning (octupoles) and chromaticity

Perfect damper

Wake fields

Gaussian white (constant over the bunch length)
transverse noise with r.m.s. amplitude &

The latency is measured based on the transition
from linear to exponential growth of the emittance
— Average and error bars based on 10 simulations
with different random seeds
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Noise amplitude

Numerical setup (COMBI) :

Linear transfer map with transverse amplitude
detuning (octupoles) and chromaticity

Perfect damper

Wake fields

Gaussian white (constant over the bunch length)
transverse noise with r.m.s. amplitude &

The latency is measured based on the transition
from linear to exponential growth of the emittance
— Average and error bars based on 10 simulations
with different random seeds

Numerical simulations are limited by
there intrinsic noise

— Realistic latencies (several minutes — millions of
turns) are at the limit of the computational power
available (on HPC machines)
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Damper gain

1079
] ] _ 7l / + « DELPHI, G = 0.01
> In the configuration considered, the ol o DELPHLG-0.2
stability threshold is almost AS/ — 1%0A
independent of the gain in the high- %4. :
gain regime = 3|
2— M ° o0,
L . R A\
V10 08 =06 —04 —02 00
Re(AQ) X107




Damper gain

> In the configuration considered, the
stability threshold is almost
independent of the gain in the high-
gain regime

» DELPHI, G =0.01
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Damper gain

e + DELPHI, G=0.01

» DELPHI, G=0.02
e + DELPHI, G=0.04
— 190 A

> In the configuration considered, the
stability threshold is almost
independent of the gain in the high-
gain regime
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Extrapolations
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Extrapolations
x10~2 Fill 5664, 2017

Timeseries Chart between 2017-05-16 16:55:55.149 and 2017-05-16 18:28:16.757

COMBI LHC flat top —~— LHC.BOFSUOFSU_ENERGY - LHC BOEBCQCONTINUGUS_HSEL:EIGEN_AMPL_1
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colliding bunch)
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> The extrapolation is compatible with the few events of very long latencies and the time spent
at flat top (squeeze)
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> The extrapolation is compatible with the few events of very long latencies and the time spent

at flat top (squeeze)

> In these conditions, in order to explain a factor 2 within 10 minutes, a noise amplitude of

2.6:10" is needed

— Further analysis is needed (dependence on chromaticity, proximity of the tune to noise lines, collision / injection

tunes, ...)
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Expected benefit of the ADT pickup electronic upgrade
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Expected benefit of the ADT pickup electronic upgrade
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Expected benefit of the ADT pickup electronic upgrade
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> With a large gain (50 turns) an
increase of the latency by a factor 1.9
is expected for the new low noise
pickup electronics for the ADT
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> With the current pickups, the
beneficial effect of the ADT is
saturating due to its own noise

> With a large gain (50 turns) an
increase of the latency by a factor 1.9
is expected for the new low noise
pickup electronics for the ADT

— To be verified experimentally (MD4)
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Experimental test with artificial noise

> The direct measurement of the distortion of the stability diagram through beam transfer
function remains a challenge*** — A novel experimental approach was needed to
study this phenomenon

N7

DA .
HL-LHC PROJECT *** C. Tambasco, PhD thesis, EPFL, 2017



Experimental test with artificial noise

> The direct measurement of the distortion of the stability diagram through beam transfer

function remains a challenge*** — A novel experimental approach was needed to

study this phenomenon
S.V. Furuseth
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Octupole and chromaticity scans
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> As expected the latency increases with the octupole current, quantitative comparison to be
finalised
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Octupole and chromaticity scans
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Octupole and chromaticity scans

60 Scan of Octupole current B2

Chromaticity scan B1
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> As expected the latency increases with the octupole current, quantitative comparison to be
finalised

> The effect of the chromaticity remains to be understood, with Q'~0 the beam is unstable
without additional noise

- Is it due to a stronger sensitivity to the machine noise, or another mechanism ?
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Conclusion
External sources of noise can significantly compromise the beam stability, with latencies
of several minutes

- In dynamical processes (e.g. collapse of the separation bumps), the noise does not impact the required stability margin
if the latency is longer than the process (see backup)

> The effect of an external source of noise on the beam stability observed in simulation
could be reproduced in dedicated experimental studies at the LHC

- Some observations remain to be understood (see backup)

> The postulated mechanism L2D2 couldn't be verified with BTF measurements up to now

> New theoretical developments are ongoing, they are needed to gain confidence in the
extrapolation to HL-LHC, in particular to :
- Confirm that the low-noise pickup upgrade of the ADT is sufficient to ensure the beam stability in the HL-LHC

- Verify that the current tolerances for the noise amplitude of new devices are sufficient not to jeopardise the beam
stability

- Possibly determine optimal settings to minimise this effect (chromaticity, ADT gain / filter algorithm, process length,
tune, ...)



Damper gain scan

Noise on Noise off

> With a lower ADT gain,
the latencies were longer ¢

1
Scan of ADT gain B1

- Only the bunches with strongest ell— o=¢
noise became unstable in a - Fjgf“g
reasonable amount of time 9=6/

> This feature is not
compatible with
simulations and remains
to be understood 2]
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Separation SCaNns (In collaboration with S. Fartoukh)

Based on the stability diagram of
PACMAN bunches (vab'n'PyssD + DELPHI)
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Separation SCaNns (In collaboration with S. Fartoukh)

Based on the stability diagram of
PACMAN bunches (vab'n'PyssD + DELPHI)
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> When colliding with an offset at the IP (in the MD configuration) the PACMAN bunches are expected to loss
Landau damping around 1.5 ¢
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Separation SCaNns (In collaboration with S. Fartoukh)

Based on the stability diagram of
PACMAN bunches (vab'n'PyssD + DELPHI)

Timeseries Chart between 2018-09-14 22:26:17.309 and 2018-09-15 01:51:30.710 (LOCAL_TIME)}
14 0 . 9 e ATLASLUMI_TOT_INST - LHC.BOQBBCLCONTINUOUS_HS B2:EIGEN_AMPL_2
0.8 5
=3 0.7 3
10 - | A I
5 06z v -
= =
g 8 ] 0 5 _(?j 150 S |"
L
o 042 : t
% 6 Ilol;éldilllllllllllE‘il‘]‘]‘" : I i 'Iv\,ﬂ_\ —
= b
LE 4 0 2 _&) a0
il o}
2 — 016 | Juntl] |
0 0 ) 0 01:38 01:40 01:42 LOCIT:E:IME 01:46 01:48 01:50

-2 0 2 4 §

Octupole current [A] % 10?

> When colliding with an offset at the IP (in the MD configuration) the PACMAN bunches are expected to loss
Landau damping around 1.5 ¢

> Crossing this unstable configuration did not lead to an instability with the maximum bump speed
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Separation SCaNns (In collaboration with S. Fartoukh)

Based on the stability diagram of
PACMAN bunches (vab'n'PyssD + DELPHI)

Timeseries Chart between 2018-09-14 22:26:17.309 and 2018-09-15 01:51:30.710 {LOCAL _TIME)
14 0 . 9 —em ATLAS:LUMI_TOT_INST - LHC BOBEBCQ.CONTINUOUS_HS.B2:EIGEN_AMPL_2
S
19 0.8 g —
D 0.7 @ ] |
fC:) 10 0 63 200 —\ L\__\_ H
— ' E ML,i
g 8 1 0 . 5 _(?j 150 = |“
Ll
o | %] £l t
o 0 0-4*5 z 1T
7] o =g
% 4 Qlalmllllllllll lllllIIllllllllllllll»
LL 0 2 c 50
< O
’ ——— 0.1 : |
0 0 ) O ﬂl;iﬂ ﬂ1;4ﬂ I]1;42 LOCI;IL:I?:IME 01:46 01:48 01:50

-2 0 2 4 §

Octupole current [A] % 10?

> When colliding with an offset at the IP (in the MD configuration) the PACMAN bunches are expected to loss
Landau damping around 1.5 ¢

> Crossing this unstable configuration did not lead to an instability with the maximum bump speed

> The instability is visible only when performing a slow scan (— luminosity levelling)
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