

Noise studies: On the 50Hz harmonics perturbation

H.Bartosik, S.Kostoglou, Y.Papaphilippou, G.Sterbini

With important input and help from:

G.Arduini, C.Baccigalupi, M.C.Bastos, A.Beaumont, X.Buffat, J.P.Burnet, M.Buzio, L.R.Carver, R.De Maria, S.Fartoukh, R.T.Garcia, G.Iadarola, T.Levens, E.Metral, O.Michels, D.Nisbet, J.Olexa, M.Solfaroli, H.Thiesen, S.Uznanski, D.Valuch, J.Wenninger.

Thanks to WP2 & WP6

Overview

<u>Motivation</u>: Investigate the source of the 50 Hz harmonics and study possible implications on LHC & HL-LHC.

- ☐ Summary of observations during 2018:
 - > Is it an instrumental effect?
 - > Possible sources.
 - > Tests with active filters of the main bends & correlation with voltage spectrum of sector12.
- ☐ Simulations for LHC
- ☐ Simulations for **HL-LHC**
- ☐ Conclusions & next steps

☐ Harmonics of 50Hz have been observed in the beam spectrum.

- ☐ Harmonics of 50Hz have been observed in the beam spectrum.
- ☐ Present in several instruments and in all beam modes.

- ☐ Harmonics of 50Hz have been observed in the beam spectrum.
- Present in several instruments and in all beam modes.

☐ Visible in B1 & B2, mainly in the horizontal plane.

Aliasing

- ☐ Harmonics of 50Hz have been observed in the beam spectrum.
- ☐ Present in several instruments and in all beam modes.
- ☐ Visible in B1 & B2, mainly in the horizontal plane.
- ☐ The source of this perturbation is not yet understood.
- ☐ According to our observations concerning the source (see next slides), these harmonics may also be present in HL-LHC.
- ☐ Learning from the LHC experience, we would like to study possible implications for HL-LHC and define tolerances.

Not instrumental (I)

Phase scan of IP1 & IP5 B1

Horizontal

(MD#3583-Beam-Beam Long Range 2018)

Changing the phase advance between IP1 & IP5 in B1 affects the amplitude evolution of the harmonics in B1.

Not instrumental (II)

Phase advance of 50Hz harmonics

Compatible with the betatronic phase advance 90-110 degrees between PUs Q7 to Q9

Possible sources

Patterns of Silicon Controlled Rectifier

Possible sources

Possible sources

Patterns of
Silicon
Controlled
Rectifier

Possible sources

Patterns of
Silicon
Controlled
Rectifier

RAMPING CONVERTERS

ARC Dipoles

RPTE.UA23.RB.A12,RPTE.UA27.RB.A23,R PTE.UA43.RB.A34,RPTE.UA47.RB.A45,RP TE.UA63.RB.A56,RPTE.UA67.RB.A67,RPT E.UA83.RB.A78.RPTE.UA87.RB.A81

Dog-leg Dipole

spares of the switching mode converters)
RPTG.SR1.RD1.LR1,RPTG.SR3.RD34.LR3,

RPTG.SR5.RD1.LR5

Septa

RPTM.SR6.RMSD.LR6B1,RPTM.SR6.RMS D.LR6B2

Quadrupoles

RPTF.SR3.RQ4.LR3,RPTF.SR3.RQ5.LR3,R PTF.SR7.RQ4.LR7,RPTF.SR7.RQ5.LR7

NOT RAMPING CONVERTERS

Alice/LHC dipoles

RPTH.SX2.RXSOL.ALICE,RPTI.SR2.RBAW V.R2,RPTI.SR8.RBLWH.R8,RPTJ.USC55.R XSOL.CMS

ALICE compensator

RPTL.SR2.RBWMDV.L2,RPTL.SR2.RBXWT V.L2,RPTL.SR2.RBXWTV.R2

LHCb Compensator

RPTN.SR8.RBXWH.L8,RPTN.SR8.RBXWSH .L8,RPTN.SR8.RBXWSH.R8

☐ These frequencies are not constant in time.

Similar oscillation observed in all DCCTs, in the beam and in

SPS B-Train.

☐ These frequencies are not constant in time.

☐ Similar oscillation observed in all DCCTs, in the beam and in

SPS B-Train.

These frequencies are not constant in time.

Similar oscillation observed in all DCCTs, in the beam and in

SPS B-Train.

These frequencies are not constant in time.

Similar oscillation observed in all DCCTs, in the beam and in

Active filters (I)

☐ Enabling/disabling the active filters: The status of the active filters of the main bends has an impact on their amplitude evolution.

B1

B2

Active filters (II)

■ Enabling/disabling the active filters: Correlation between amplitude evolution of harmonics in the beam and in the voltage spectrum of RPTE.UA23.RB.A12 (instrumentation installed during TS2 from EPC)

Active filters (III)

■ Enabling/disabling the active filters:

Voltage spectrum sector12:

- ☐ Harmonics up to 1kHz decrease when active filter is enabled.
- ☐ Harmonics beyond 1kHz increase when active filter is enabled.
- ☐ Compatible with the different behaviour observed between 600 & 1.2kHz of the beam.

Simulations

For a simplified mode, we convert the offset observed in BPMCS.7L4.B1 to an equivalent dipolar kick at the same location. $|X(s,N)| = \frac{\sqrt{\beta_{\text{Noise}}\beta(s)} |A_{\text{Noise}}|}{|1-e^{2i\pi(Q_{\text{Noise}}-Q)}|}$

☐ Phase and distribution of the dipolar kicks along the main bends are not taken into account in this simplistic model.

-6.0

Reduction of lifetime from ~295h to ~180h

 $f_x[Hz]$

3514.2 3486.1

With BB

7TeV, I_MO=-300A, ϵ_n = 2.5 μ m,(62.315, 60.320), Q_p = 15, I=1.2e11, β * = 15cm,Dipolar ripple at BPMCS.7L4.B1

- By applying an equivalent dipolar kick in the HL-LHC case (without BB at the moment) an emittance growth 0f 0.2μm/h is observed in the horizontal plane.
- However, according to the distribution and phasing of the kicks along the main dipoles, the spectrum can significantly change.

Summary

The 50Hz harmonics are not an instrumental effect .
The spectrum indicates SCR as possible candidates and a partial correlation
between the spectrum of the beam and the spectrum of the power converter of
sector12 has been established.
If the source is indeed the power converters of the main bends (at least for some of
the harmonics), 50Hz harmonics will also be visible in the HL-LHC.
Simulations indicate that there is an impact on the lifetime of the beam.
By applying a similar perturbation in the HL-LHC case, simulations indicate that they
can cause emittance growth, with 7.7 kHz being the most dangerous frequency -for
a WP of (62.315, 60.320).

Next steps:

- Analysis of the voltage/current measurements of sector12. Further studies for energy dependence.
- A noise model for the 50Hz from power converters of all sectors, including phase.
- Is there indeed an impact on lifetime?(MD#4)
- Can we inject controlled noise directly on the power converters of the main bends?(MD#4)
- How can these harmonics attenuate?

Backup

CRDS

7.5kHz

Fill 6272, FLATTOP 1e7 2.00 1.75 1.50 Spectrum B1H 1.25 1.00 0.75 0.50 0.25 0.00 4000 8000 6000 10000 12000 14000 f [H₇]

5/10/2017 02:18 CET, before tune jump

5/10/2017 02:23 CET, after tune jump

For a simplified mode, we convert the offset observed in BPMCS.7L4.B1 to an equivalent dipolar kick at the same location. $|X(s,N)| = \frac{\sqrt{\beta_{\text{Noise}}\beta(s)} |A_{\text{Noise}}|}{|1-e^{2i\pi(Q_{\text{Noise}}-Q)}|}$

 $|X(s,N)| = rac{1}{|1 - e^{2i\pi(Q_{ ext{Noise}} - Q)}|}$

☐ Phase and distribution of the dipolar kicks along the main bends are not taken into account in this simplistic model.

Note (I):

The current needed from 1 dipole (eg. MB.A10R3.B1) to observe an offset of 400nm at 7650Hz is:

β=105.98m at Q7 location

 β noise=100.84m

Qnoise = 7650/11245.5=0.6803->0.3197

 $Q_{x} = 0.31$

Anoise = 2.36e-10rad

 $\theta = 2\pi/1232 \sim 0.005$ rad per dipole, I=11kA

Ir = 11[kA]*2.3e-10[rad]/0.005[rad] = 0.519*1e-3A

For a simplified mode, we convert the offset observed in BPMCS.7L4.B1 to an equivalent dipolar kick at the same location. $|X(s,N)| = \frac{\sqrt{\beta_{\text{Noise}}\beta(s)} |A_{\text{Noise}}|}{|1-e^{2i\pi(Q_{\text{Noise}}-Q)}|}$

☐ Phase and distribution of the dipolar kicks along the main bends are not taken into account in this simplistic model.

Note (II): There is a change in the spectrum during the tune jump at FLATTOP Fill 7245, INJPHYS Fill 7245, STABLE 5 5 Spectrum B1H $_{\sim}$ Spectrum B1F 2000 4000 6000 8000 4000 2000 6000 8000 10000 f [Hz] f [Hz]

