

Reliability requirements for the inner triplet protection

Tuesday, 16.10.2018 – Session WP3/WP7

M. Blumenschein,

A. Apollonio, D. Carrillo, A. Iliopoulou, B. Lindstrom,

M. Mentink, E. Nowak, E. Ravaioli, F. Rodriguez, D. Sollich,

J. Uythoven, M. Valette, D. Wollmann,

8th HL-LHC Collaboration Meeting, CERN

Contents

RIRE © Reliability Requirements and Initial Risk Evaluation

- 1. Principle of RIRE
- 2. RIRE for Inner Triplets Protection
- 3. Conclusions

1. Principle of RIRE

Reliability Requirements and Initial Risk Evaluation – RIRE ©

1. Risk matrix

Accelerator reliability targets

2. Adapted FMEA

System failure behaviour

3. System reliability requirements

4. Risk Evaluation: necessary reliability calculations

Successfully applied to

- Definition of reliability requirements for DYPQ
- Identification of DYPQ trigger link as critical part: reliability calculation, modification of system design on hardware level
- ✓ Definition of 11T reliability requirements (D. Sollich*) ongoing

*Reliability requirements for the 11T quench protection system, 17.10.2018, Session Wednesday PM - WP5/WP7/WP9/WP11

2. RIRE for the Inner Triplet protection

1. Risk matrix

Accelerator reliability targets

Where we are now:

2. Adapted FMEA

System failure behaviour

Simulations:

M. Valette*

B. Lindstrom

E. Ravaioli

M. Mentink

Modified system design on functional level

- 3. System reliability requirements
- 4. Risk Evaluation: necessary reliability calculations

Next: Reliability modelling: hardware modifications

* Fast failures from CLIQ and QH, 16.10.2018, Session Tuesday AM – WP3/WP7 Effect of beam screen shielding, 17.10.2018, Session Wednesday AM - WP2;3;6B;7;12

2. Step 1: Accelerator reliability requirements

HL- LHC requirements correspond to LHC requirements

HL-LHC/ LHC risk matrix		Recovery								
		∞	year	month	week	day	hours	minutes		
			S6	S5	S4	S3	S2	S1		
	1 / hour									
	1 / day									
\cdot\;	1 / week									
Frequency	1 / month					×				
redu	1 / year									
Ē	1 / 10 years									
	1 / 100 years									
	1 / 1000 years									

2. Step 2.1: System structure

- 1. LHC
 - 1. Beam
 - 2. Inner triplet
 - 1. Inner triplet protection, n=6
 - 1. Outer layer quench heaters, n=8
 - 2. CLIQ, n=1
 - Quench detection

2. Step 2.2: System functions

2. Step 2.3: Context dependent functions

2. Step 2.4: Failure modes and effects

RIRE tailored FMEA table

Context Function	Previous slide	Simulations: M. Valette, B. Lindstrom
Failure mode		E. Ravaioli, M. Mentink
Immediate Effect	_	Beam, IT
End effect	_	LHC
Severity of end effect		Recovery time, risk matrix
Detection method		,,
Recommendations		Modifications of system
The table needs to be f	filled in for all	design on functional level

- Magnets: Q1, Q2a/b, Q3
- MQXF circuit currents: low current (1.5 kA), nominal current (16.47 kA), ultimate current (17.8 kA)
- Worst cases (combination of Magnet and circuit current) define the end effect for which reliability requirements are defined

2. Step 2.4: FMEA table example

Context	Normal operation, all magnets, all currents				
Function	Keep DQHDS charged				
Failure mode	Xoo8 QH circuits discharge				
Immediate Effect	Dipole kick due to the field generated by the QH circuit depending on X				
	2. Discharge is detected as quench by uQDS				
End effect	 Depending on X: beam losses; damage of collimators; 				
	All QH of all six magnets are fired, beam dump, power abort				
Severity of end effect	Depends on X				
Detection method	HDS discharge supervision (< 80 µs)				
Recommendation	Depends on X				

Detailed table

2. Step 2.4: FMEA table example

Detailed table for worst case: Q2a/b at ultimate current

FM	Xoo8 QH circuits discharge									
	1008 QH-circuits	2008 QH-circuits	8008 QH-circuits							
Immediate effect										
End effect, Recovery										
Severity [recovery]										
Recomm- endations										

Objective: Complete list of end effects

2. Step 2.4: List of end effects without additional protection

Beam

- IT_EE1: Possible damages of collimator, S5 (month)
 - FM: Spurious kick of 1008 QH-circuits
- IT_EE2: Damage of collimator, S5 (month)
 - FM: Spurious kick of 2008 QH-circuits
 - FM: Spurious kick of CLIQ-unit
- IT_EE3: Damage of experiment, S6 (year)
 - FM: Spurious kick of 8008 QH-circuits

Inner triplet

- IT_EE4: Damage of inner triplet, S5 (month)
 - FM: Missing QH-circuits 0oo8 (CLIQ only)
- IT_EE5: Injection delayed (analysis, revalidation) S3 (day)
 - FM: Missing QH-circuits 7008; 6008
 - FM: Missing CLIQ (QH only)

2. Step 3: Reliability requirements <u>without</u> additional protection

		Recovery								
	LHC risk matrix		year	month	week	day	hours	minutes		
			S6	S5	S4	S3	S2	S1		
	1 / hour									
	1 / day									
	1 / week									
cy	1 / month									
Frequency	1 / year					EE5				
-red	1 / 10 years									
	1 / 100 years			EE1, EE2, EE4						
	1 / 1000 years		EE3							

2. Step 3: Reliability requirements <u>with</u> additional protection

LHC risk matrix		Recovery									
		∞	year		mo	nth	week	da	ay	hours	minutes
		S7	S6		S5		S4	S3		S2	S1
	1 / hour										
	1 / day										
	1 / week			Fast beam dump					rigger		
cy	1 / month		(CLIQ, QH)								
Frequency	1 / year							EE5			
red	1 / 10 years										
	1 / 100 years				EE1, EE2, EE4					LIQ able to protect low current	
	1 / 1000 years		E	E3							

+ EE of Additional protection

3. Conclusions

- RIRE, a systematic four-step procedure for the experienced based derivation of quantitative reliability targets is presented.
- RIRE is applied to different systems at CERN with success.
- RIRE is being applied to the IT quench protection:
 - At level 2 out of 4: design phase
 - Additional protection requirements have been defined (functional level)
- NEXT: RIRE method and resulting reliability studies to guide further design and hardware development of the IT protection system.

Thank you for your attention!

