CMS Forward Physics Detectors: Plans for HL-LHC

HL-LHC Collaboration Meeting
16 October 2018

Mario Deile (CERN) on behalf of
The CMS Collaboration

Many thanks for valuable discussions and material to Riccardo De Maria, Stéphane Fartoukh, Paolo Fessia, Daniele Mirarchi, many PPS colleagues

From M. Arneodo, HL-LHC Coordination Meeting, 10 October 2017:

Physics motivations: central exclusive production

1) LHC as tagged photon-photon collider
$\check{\sum}$ • Measure $\gamma \gamma \rightarrow W^{+} W^{-}, e^{+} e^{-}, \mu^{+} \mu^{-}, \tau^{+} \tau^{-}$

- Search for AQGC with high sensitivity
- Search for SM forbidden $\mathbf{Z Z} \gamma \gamma, \gamma \gamma \gamma \gamma$ couplings

2) LHC as tagged gluon-gluon collider

- Exclusive two and three jet events, M up to $\sim 700-800 \mathrm{GeV}$.
- Test of pQCD mechanisms of exclusive production.
- Gluon jet samples with small quark jet component
- Proton structure (GPDs)

```
Search for new resonances in CEP
- Clean events (no underlying pp event)
- Independent mass measurement from pp system
- \(\mathrm{J}^{\mathrm{PC}}\) quantum numbers \(0^{++}, 2^{++}\)
```

NB mass of centrally produced system measured from scattered protons momenta

CMS PPS at HL-LHC?

- Flagship channels, i.e. central exclusive production of WW, dileptons and dijets are statistics limited: factor 10 more luminosity welcome.
Suppression of pileup (200) requires timing in the few ps range: not impossible given the current technology
- Only interested in standard high-lumi running (no special runs)
- Would need access to central diffractive masses
- from O(100 GeV): Standard Model processes for alignment/calibration
- to a few TeV: new physics.
- Focus of this presentation:

Calculation of mass reach at 4 promising forward detector locations using:

- preview optics as presently available
(simulations with MAD-X)
- luminosity levelling trajectories (crossing-angle, β^{*}) as presently foreseen for horizontal and vertical crossing at IP5
- collimation scheme as presently foreseen
- rules for near-beam detector insertions as presently foreseen

Central Diffractive Production: Kinematics

$\mathrm{X}=$ all products except the 2 leading protons
$\xi_{1 / 2}=\frac{\Delta p_{1 / 2}}{p}=$ fractional momentum loss of surviving proton $1 / 2$
The acceptance for diffractive mass M is determined by acceptance for ξ_{1} and ξ_{2} in the 2 spectrometer arms. $\mathrm{M}_{\text {min }}{ }^{2}=\xi_{1, \text { min }} \xi_{2, \text { min }} \mathrm{s}$

The rapidity y quantifies how central $(\mathrm{y}=0)$ or forward (large $|\mathrm{y}|)$ the centre-of-mass of X is:
Under certain conditions: $y \approx$ pseudo-rapidity $\eta=-\ln \tan (\theta / 2)$

HL-LHC Optics 1.3 up to 500 m

- for crossing angle $\left(\alpha / 2, \beta^{*}\right)=(250 \mu \mathrm{rad}, 15 \mathrm{~cm})$
- XRPs @ $(12.9+3) \sigma+0.3 \mathrm{~mm}$

HL-LHC:
new standard emittance $\varepsilon_{\mathrm{n}}=2.5 \mu \mathrm{~m} \operatorname{rad}($ instead of 3.5$)$

$\xi \equiv \frac{\Delta p_{\text {proton }}}{p_{\text {proton }}}=\frac{x_{\text {track }}}{D_{x}} \quad$ horizontal dispersion
$\xi_{\text {min }}=\left(15.9 \sigma_{x}+0.3 \mathrm{~mm}\right) / \mathrm{D}_{\mathrm{x}}$

[^0]Region of Interest: 180 - 200 m
(for Classic Roman Pot Technology)

Region of Interest: 210 - 250 m
(for Classic Roman Pot Technology)

Region of Interest: 400-450 m
(for Future "Roman Pot" Technology)

Evolution of Parameters

For the adaptive scenarios, include crossing angle "antilevelling" à la LHC after the end of levelling

Slightly delay the end of levelling

Yicun

max crabbing angle: $380 \mu \mathrm{rad}$

Mass Acceptance Calculation

Calculate mass limits: $M_{\min / \max }=\xi_{\min / \max } \sqrt{s}$ in $\left(\alpha / 2, \beta^{*}\right)$ plane (for symmetric optics in Beam $1 /$ Beam 2 with $\xi_{1 \text { min } / \max }=\xi_{2 \text { min/max }}$)

Cannot simulate every $\left(\alpha / 2, \beta^{*}\right)$ point \rightarrow analytical approach:

$\mathrm{d}_{\mathrm{XRP}}$: detector distance from beam centre: analytical expression depending on TCT collimator settings and optics properties
$\mathrm{D}_{\mathrm{XRP}}$: hori. dispersion @ detector location, parametrisation in $(\alpha / 2, \xi)$ from MAD-X

$$
M_{\text {max }}=\xi_{\text {max }} \sqrt{s}=\frac{d_{\mathrm{A}}}{D_{\mathrm{A}}\left(\frac{\alpha}{2}, \xi_{\text {max }}\right)} \sqrt{s}
$$

Based on full aperture study
d_{A} : aperture limitation (hori. or vert.) upstream, in most cases: TCLs
D_{A} : dispersion (hori. or vert.) @ aperture limit., parametrisation in $(\alpha / 2, \xi)$ from MAD-X

Examples: Minimum "Mass"@ 220m and 420m

Contour lines for $M_{\min }=\xi_{\text {min }} \sqrt{s}$
TCT settings: $\mathrm{d}_{\mathrm{TCT}}=$ const. $\left(12.9 \sigma @ \beta^{*}=15 \mathrm{~cm}\right)$

Levelling trajectories:

- Baseline
- Relaxed adaptive
- Aggressive adaptive
- Vertical crossing (any trajectory)

Acceptance in the Mass - Rapidity Plane

- Baseline
- Relaxed adaptive
- Aggressive adaptive
- Vertical crossing (any trajectory)

Note on tor $\mathbf{p}_{\mathbf{T}}$:

The M-y plot is for $t_{1}=t_{2}=0$

- Fixed non-zero $t_{1 / 2}$ would shift the contours:
$\Delta \xi_{\text {min }}=-\frac{L_{x} \theta_{x}^{*}}{D_{x}} \quad$ (dominated by angular vertex spread)
- Integration over process-dependent t-distribution would smear $\mathrm{M}_{\min }$ by $2-3 \mathrm{GeV}$

For each point $\left(\alpha / 2, \beta_{\mathrm{x}}{ }^{*}\right)$:
Acceptance for central diffractive events is defined in 2-dim space $\left(\xi_{1}, \xi_{2}\right)$ or equivalently - after basis rotation - in (M, y):

$$
\begin{array}{cc}
\mathrm{M}^{2}=\xi_{1} \xi_{2} \mathrm{~s} & y=\frac{1}{2} \ln \frac{\xi_{1}}{\xi_{2}} \\
\hline \ln \frac{M}{\sqrt{s}}=\frac{1}{2}\left(\ln \xi_{1}+\ln \xi_{2}\right) & y=\frac{1}{2}\left(\ln \xi_{1}-\ln \xi_{2}\right)
\end{array}
$$

Acceptance in the Mass - Rapidity Plane: Horizontal Crossing, Baseline Trajectory

Levelling trajectories:

- Baseline
- Relaxed adaptive
- Aggressive adaptive
- Vertical crossing (any trajectory)

Acceptance in the Mass - Rapidity Plane: Vertical Crossing

Levelling trajectories:

- Baseline
- Relaxed adaptive
- Aggressive adaptive
- Vertical crossing (any trajectory)

XRPs@ 196 m, 220 m, 234 m, 420 m

Mass Acceptance Integrated over y

Horizontal Crossing, Baseline Trajectory

Conclusions

- 4 relevant locations:
- just before TCL5 ($\sim 196 \mathrm{~m}$) (high masses)
- just before TCL6 ($\sim 220 \mathrm{~m}$) (intermediate masses)
- just after Q6 (~234 m) (lower masses)
$-420 \mathrm{~m}: \mathrm{D}_{\mathrm{x}}>0 \rightarrow$ diffractive p between beam pipes \rightarrow needs new technology (lowest masses)
- Main driving factor for acceptance: dispersion !
- Advantages of vertical and horizontal crossing: Vertical:
- if 420 m unit is not present: better low-mass limit (210 GeV instead of 660 GeV) if 420 m unit is present: same low-mass limit (50 GeV)
- smaller acceptance gaps in the $100-200 \mathrm{GeV}$ region

Horizontal:

- access to higher masses (4 TeV instead of 2.7 TeV)
\rightarrow preference for vertical crossing
- Mass acceptance gaps in $\sim 1 \mathrm{TeV}$ region could be closed if TCLs were slightly more open:
$\mathrm{d}_{\mathrm{TCL} 5}=18 \sigma_{15 \mathrm{~cm}}$ instead of $14.2 \sigma_{15 \mathrm{~cm}}$
$\mathrm{d}_{\text {TCL6 }}=20 \sigma_{15 \mathrm{~cm}}$ instead of $14.2 \sigma_{15 \mathrm{~cm}}$
- Many technical issues to be addressed !

The End.

Appendix

Outlook: Other Issues to be Studied

- Debris showers \rightarrow BLM rates:
max. lumi 2018: $2 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
max. lumi HL-LHC: $20 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
\rightarrow factor 10
At $2 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$: BLM of cylindrical pot is below threshold by factor $15 \rightarrow$ should be ok But all designs will change \rightarrow to be watched
- Impedance:
- max protons / beam 2018: 3.2×10^{14}

HL-LHC: 6×10^{14}
\rightarrow factor 2 in current \rightarrow factor 4 in heating

- bunch length? \rightarrow impact on power spectrum
- RP distance: already studied down to 1 mm
- impedance budget of the machine might become tighter
- Influence from crab cavities on scattered p trajectories should be negligible (H. Burkhardt)
- For detector instrumentation: the pileup:
$\mu \leq 200$ (w/o levelling, w/o crab cav.)
$\mu \leq 140$ (w/ levelling, w/ crab cav.)
- Radiation issues

XRP Insertion Distance vs. β^{*}

Assume insertion rule: $d_{\mathrm{XRP}}=\left(n_{\mathrm{TCT}}+3\right) \sigma_{\mathrm{XRP}}+0.3 \mathrm{~mm}$

Collimation scheme presently foreseen:
Collimation scheme presently foreseen:
$\mathrm{d}_{\mathrm{TCT}}=$ const. $\rightarrow \quad n_{\mathrm{TCT}}\left(\beta^{*}\right)=n_{\mathrm{TCT}}\left(\beta_{0}^{*}\right) \sqrt{\frac{\beta^{*}}{\beta_{0}^{*}}}$ $\sigma_{\mathrm{XRP}}=\sqrt{\frac{\varepsilon_{n} \beta_{\mathrm{XRP}}}{\gamma}} \quad$ We need $\beta_{\mathrm{XRP}}\left(\beta^{*}\right)!$

ATS invariance of optical functions: $v_{\mathrm{XRP}}=\sqrt{\frac{\beta_{\mathrm{XRP}}\left(\beta^{*}\right)}{\beta^{*}}} \cos \mu_{\mathrm{XRP}}\left(\beta^{*}\right)$: magnification independent of β^{*}

$$
L_{\mathrm{XRP}}=\sqrt{\beta_{\mathrm{XRP}}\left(\beta^{*}\right) \beta^{*}} \sin \mu_{\mathrm{XRP}}\left(\beta^{*}\right): \text { eff. length independent of } \beta^{*}
$$

$$
\Rightarrow\left\{\begin{array}{c}
\tan \mu_{\mathrm{XRP}}\left(\beta^{*}\right)=\frac{L_{\mathrm{XRP}}}{v_{\mathrm{XRP}}} \frac{1}{\beta^{*}} \\
\beta_{\mathrm{XRP}}\left(\beta^{*}\right)=\frac{L_{\mathrm{XRP}} v_{\mathrm{XRP}}}{\sin \mu_{\mathrm{XRP}}\left(\beta^{*}\right) \cos \mu_{\mathrm{XRP}}\left(\beta^{*}\right)}
\end{array}\right\} \Rightarrow \begin{aligned}
& \beta_{\mathrm{XRP}}\left(\beta^{*}\right)=v_{\mathrm{XRP}}^{2} \beta^{*}+\frac{L_{\mathrm{XRP}}^{2}}{\beta^{*}} \\
& \sigma_{\mathrm{XRP}}=\sqrt{\frac{\varepsilon_{n}}{\gamma}\left(v_{\mathrm{XRP}}^{2} \beta^{*}+\frac{L_{\mathrm{XRP}}^{2}}{\beta^{*}}\right)}
\end{aligned}
$$

$$
d_{\mathrm{XRP}}=\left(n_{\mathrm{TCT}}\left(\beta_{0}^{*}\right) \sqrt{\frac{\beta^{*}}{\beta_{0}^{*}}}+3\right) \sqrt{\frac{\varepsilon_{n}}{\gamma}\left(v_{\mathrm{XRP}}^{2} \beta^{*}+\frac{L_{\mathrm{XRP}}^{2}}{\beta^{*}}\right)}+0.3 \mathrm{~mm}
$$

Dispersion vs. Crossing-Angle

MAD-X simulations:

- $\left(\alpha_{\mathrm{x}} / 2, \alpha_{\mathrm{y}} / 2, \beta_{\mathrm{x}}{ }^{*}, \beta_{\mathrm{y}}{ }^{*}\right)=(295 \mu \mathrm{rad}, 0,15 \mathrm{~cm}, 15 \mathrm{~cm})$:
$\mathrm{D}_{\mathrm{x}}(196 \mathrm{~m})=-32.0 \mathrm{~mm}, \mathrm{D}_{\mathrm{x}}(220 \mathrm{~m})=-23.3 \mathrm{~mm}, \mathrm{D}_{\mathrm{x}}(234 \mathrm{~m})=-18.1 \mathrm{~mm}, \mathrm{D}_{\mathrm{x}}(420 \mathrm{~m})=+1862 \mathrm{~mm}$
- $\left(\alpha_{\mathrm{x}} / 2, \alpha_{\mathrm{y}} / 2, \beta_{\mathrm{x}}{ }^{*}, \beta_{\mathrm{y}}{ }^{*}\right)=(0,295 \mu \mathrm{rad}, 15 \mathrm{~cm}, 15 \mathrm{~cm})$:
$D_{x}(196 m)=-104 m m, D_{x}(220 m)=-106 m m, D_{x}(234 m)=-108 m m, D_{x}(420 m)=+1928 \mathrm{~mm}$

Assume linearity: $D\left(\frac{\alpha}{2}\right)=D(0)+D^{\prime} \frac{\alpha}{2} \quad$ (confirmed by 2017 data).

Maximum Mass: General Principle

$\mathrm{M}_{\text {max }}$ is given by the tightest aperture cut of all TCL collimators upstream of the detector.

$$
\tilde{M}_{\max }=\frac{d_{\mathrm{TCL}}}{D_{\mathrm{TCL}}\left(\frac{\alpha_{x}}{2}\right)} \sqrt{s}
$$

Dispersion at TCLX.4, TCL.5, TCL. 6 vs. crossing-angle
$M_{\text {max }}$ depends only on $\alpha / 2$, not on β^{*} !

Collimation strategy for TCLs presently foreseen:
$\mathrm{d}_{\mathrm{TCL}}=14.2 \sigma\left(\beta^{*}=15 \mathrm{~cm}\right)$ constant in absolute distance

ξ-Dependence of the Dispersion: Horizontal Crossing

D @ TCLs increases with ξ
\rightarrow max. mass cut tighter than anticipated using $\mathrm{D}(\xi=0)$

For small ξ (within acceptance): approximately linear
\rightarrow extended dispersion model:

$$
D\left(\frac{\alpha}{2}, \xi\right)=D_{0}+d_{\alpha} \frac{\alpha}{2}+d_{\xi} \xi+d_{\alpha \xi} \frac{\alpha}{2} \xi
$$

ξ-Dependence of the Dispersion: Vertical Crossing

ξ-Dependence of the Dispersion: Vertical Crossing

Baseline Trajectory ($\alpha_{\mathrm{y}} / 2=250 \mu \mathrm{rad}$) Vertical Dispersion

 XRPs

Minimum "Mass" @ 196 m with ξ-Dependent D

Contour lines for $\tilde{M}_{\text {min }}=\xi_{\text {min }} \sqrt{s}$ with $\xi_{\min }=\frac{d_{\mathrm{XRP}}\left(\beta^{*}\right)+\delta}{D_{x}\left(\frac{\alpha}{2}, \xi_{\min }\right)}$ resolved for $\xi_{\text {min }}$
TCT settings: $\mathrm{d}_{\mathrm{TCT}}=$ const. $\left(12.9 \sigma @ \beta^{*}=15 \mathrm{~cm}\right)$

Levelling trajectories:

- Baseline
- Relaxed adaptive
- Aggressive adaptive
- Vertical crossing (any trajectory)

Insertion distances very moderate !

Inclusion of ξ-dependence improved $\mathrm{M}_{\text {min }}$ by: Horiz., baseline: $\sim 580 \mathrm{GeV}$ (20\%)
Vert.: $\quad \sim 100 \mathrm{GeV}$ (10\%)

Minimum "Mass"@ 234 with ξ-Dependent D

Contour lines for $\tilde{M}_{\text {min }}=\xi_{\text {min }} \sqrt{s}$ with $\xi_{\text {min }}=\frac{d_{\mathrm{XPP}}\left(\beta^{*}\right)+\delta}{D_{x}\left(\frac{\alpha}{2}, \xi_{\text {min }}\right)}$ resolved for $\xi_{\text {min }}$
TCT settings: $\mathrm{d}_{\mathrm{TCT}}=$ const. $\left(12.9 \sigma @ \beta^{*}=15 \mathrm{~cm}\right)$

Levelling trajectories:

- Baseline
- Relaxed adaptive
- Aggressive adaptive
- Vertical crossing (any trajectory)

Aperture Study: Horizontal Crossing

Baseline Levelling Trajectory ($\alpha / 2=250 \mu \mathrm{rad}$)

Protons run into the beampipe.

Maximum Mass: Horizontal Crossing

$\widetilde{M}_{\text {max }}=\xi_{\text {max }} \sqrt{s}=\frac{d_{\mathrm{TCL}}}{\left.D_{\mathrm{TCL}} \frac{\alpha_{x}}{2}, \xi_{\text {max }}\right)} \sqrt{s} \quad \rightarrow$ quadratic equation for $\xi_{\text {max }}$
dashed: naive calculation with ξ-independent D

TCLX. 4 determines $\mathrm{M}_{\text {max }}$ at 196 m

TCL. 5 determines $\mathrm{M}_{\text {max }}$ at 220 m

TCL. 6 determines $\mathrm{M}_{\text {max }}$ at 234 m

Beam pipe aperture determines $\mathrm{M}_{\text {max }}$ at 420 m

Aperture Study: Vertical Crossing

Baseline Levelling Trajectory $\left(\alpha_{y} / 2=250 \mu \mathrm{rad}\right)$

Horizontal Aperture

Vertical Aperture

For $\mathrm{s}>315 \mathrm{~m}$ or $\xi<0.026$: TCL. 6 is not the aperture limitation !
Protons run into the beampipe.

Maximum ξ from Aperture: Vertical Crossing

Baseline Levelling Trajectory $\left(\alpha_{y} / 2=250 \mu \mathrm{rad}\right)$
 Horizontal Aperture
 Vertical Aperture

Repeat this as a function of $\alpha_{y} / 2$,
at each $\alpha_{y} / 2$ look for the horizontal and vertical bottleneck upstream of each detector location.
$\rightarrow|\xi|_{\max }\left(\alpha_{y} / 2\right)$ for each detector location

Maximum Mass from Aperture: Vertical Crossing

Take minimum of horizontal and vertical aperture limitations.

horizontal and vertical aperture determine

$$
\mathrm{M}_{\max } \text { at } 196 \mathrm{~m}
$$

horizontal aperture determines $M_{\max }$ at 220 m
horizontal aperture determines $\mathrm{M}_{\max }$ at 234 m horizontal aperture determines $\mathrm{M}_{\max }$ at 420 m

For vertical crossing the maximum mass is independent of the crossing-angle (except at 196 m location for $\alpha / 2>240 \mu \mathrm{rad}$).

Mass Acceptance Integrated over y: Principle

M-acceptance of an overlap area relative to the total kinematically allowed y-interval, assuming a flat rapidity distribution:

where

$$
\left.\begin{array}{l}
M_{\min }=\sqrt{\xi_{1 \min } \xi_{2 \min } s} \\
M_{\max }=\sqrt{\xi_{1 \max } \xi_{2 \max } s} \\
M_{\mathrm{x} 1}=\min \left(\sqrt{\xi_{1 \min } \xi_{2 \max } s},\right. \\
M_{\mathrm{x} 2}=\max \left(\sqrt{\xi_{2 \min } \xi_{1 \max } s}\right) \\
\xi_{2 \max } s
\end{array}, \sqrt{\xi_{2 \min } \xi_{1 \max } s}\right) .
$$

Reminder: this is for $t_{1}=t_{2}=0$!
Including t would introduce process-dependent smearing.

[^0]: for $\mathrm{s}>\sim 270 \mathrm{~m}: \mathrm{D}_{\mathrm{x}}>0$
 \rightarrow diffractive protons between the beam pipes
 \rightarrow no standard Roman Pot possible \rightarrow needs new technology Free only around 420 m .

