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From M. Arneodo, HL-LHC Coordination Meeting, 10 October 2017:
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• Flagship channels, i.e. central exclusive production of WW, dileptons and dijets
are statistics limited: factor 10 more luminosity welcome.
Suppression of pileup (200) requires timing in the few ps range: not impossible given the current
technology

• Only interested in standard high-lumi running (no special runs)

• Would need access to central diffractive masses
- from O(100 GeV): Standard Model processes for alignment/calibration
- to a few TeV: new physics.

• Focus of this presentation:
Calculation of mass reach at 4 promising forward detector locations using:
- preview optics as presently available

(simulations with MAD-X)
- luminosity levelling trajectories (crossing-angle, b*) as presently foreseen
for horizontal and vertical crossing at IP5

- collimation scheme as presently foreseen
- rules for near-beam detector insertions as presently foreseen

CMS PPS at HL-LHC ?
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Central Diffractive Production: Kinematics
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X = all products except the 2 leading protons

The acceptance for diffractive mass M is determined by acceptance for x1 and x2 in the 2 spectrometer arms.
Mmin

2 = x1,min x2,min s

The rapidity y quantifies how central (y = 0) or forward (large |y|) the centre-of-mass of X is:
Under certain conditions: y » pseudo-rapidity h = - ln tan (q/2)
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HL-LHC Optics 1.3 up to 500 m
• for crossing angle (a/2, b*) = (250 mrad, 15 cm)
• XRPs @ (12.9 + 3) s + 0.3 mm

xmin = (15.9 sx + 0.3 mm) / Dx
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horizontal dispersion

HL-LHC:
new standard emittance en = 2.5 mm rad (instead of 3.5)

regions of interest
for low |x|

for s > ~270 m : Dx > 0
à diffractive protons between the beam pipes
à no standard Roman Pot possibleà needs new technology
Free only around 420 m.
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Region of Interest: 180 – 200 m
(for Classic Roman Pot Technology)

more detailed studies for
s = 196 m
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à interesting for high |x|
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Region of Interest: 210 – 250 m
(for Classic Roman Pot Technology)
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• s = 220 m
• s = 234 m

Comparison 2018
(a/2, b*) = (130 mrad, 30 cm)
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Region of Interest: 400 – 450 m
(for Future “Roman Pot” Technology)

more detailed studies for
s = 420 m
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Mass Acceptance Calculation
Calculate mass limits:                                       in (a/2, b*) plane
( for symmetric optics in Beam 1 / Beam 2 with x1 min/max = x2 min/max)

Cannot simulate every (a/2, b*) pointà analytical approach:
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gap + insensitive XRP detector margin
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Based on full aperture study

dA: aperture limitation (hori. or vert.) upstream,
in most cases: TCLs

DA: dispersion (hori. or vert.) @ aperture limit.,
parametrisation in (a/2, x) from MAD-X

dXRP: detector distance from beam centre:
analytical expression depending on
TCT collimator settings
and optics properties

DXRP: hori. dispersion @ detector location,
parametrisation in (a/2, x) from MAD-X
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Examples: Minimum “Mass” @ 220m and 420m
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Acceptance in the Mass – Rapidity Plane
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Levelling trajectories:
- Baseline
- Relaxed adaptive
- Aggressive adaptive
- Vertical crossing (any trajectory)
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For each point (a/2, bx*):
Acceptance for central diffractive events is defined in 2-dim space (x1, x2)
or equivalently – after basis rotation – in (M, y):

no acceptance

1A

Note on t or pT:
The M-y plot is for t1 = t2 = 0
• Fixed non-zero t1/2 would shift the contours:

(dominated by angular vertex spread)

• Integration over process-dependent t-distribution would
smear Mmin by 2 – 3 GeV
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Acceptance in the Mass – Rapidity Plane:
Horizontal Crossing, Baseline Trajectory

Levelling trajectories:
- Baseline
- Relaxed adaptive
- Aggressive adaptive
- Vertical crossing (any trajectory)
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Acceptance in the Mass – Rapidity Plane:
Vertical Crossing

Levelling trajectories:
- Baseline
- Relaxed adaptive
- Aggressive adaptive
- Vertical crossing (any trajectory)
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Mass Acceptance Integrated over y
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Conclusions

• 4 relevant locations:
- just before TCL5 (~ 196 m) (high masses)
- just before TCL6 (~ 220 m) (intermediate masses)
- just after Q6 (~ 234 m) (lower masses)
- 420 m: Dx > 0à diffractive p between beam pipesà needs new technology (lowest masses)

• Main driving factor for acceptance: dispersion !

• Advantages of vertical and horizontal crossing:
Vertical:
- if 420 m unit is not present: better low-mass limit (210 GeV instead of 660 GeV)
if 420 m unit is present: same low-mass limit (50 GeV)

- smaller acceptance gaps in the 100 – 200 GeV region
Horizontal:
- access to higher masses (4 TeV instead of 2.7 TeV)

à preference for vertical crossing

• Mass acceptance gaps in ~1 TeV region could be closed if TCLs were slightly more open:
dTCL5 = 18 s15cm instead of 14.2 s15cm
dTCL6 = 20 s15cm instead of 14.2 s15cm

• Many technical issues to be addressed !
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The End.





Appendix
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Outlook: Other Issues to be Studied

• Debris showersà BLM rates:
max. lumi 2018: 2 x 1034 cm-2 s-1

max. lumi HL-LHC: 20 x 1034 cm-2 s-1

à factor 10

At 2 x 1034 cm-2 s-1 : BLM of cylindrical pot is below threshold by factor 15à should be ok
But all designs will changeà to be watched

• Impedance:
- max protons / beam 2018: 3.2 x 1014

HL-LHC: 6 x 1014

à factor 2 in currentà factor 4 in heating
- bunch length ?à impact on power spectrum
- RP distance: already studied down to 1 mm
- impedance budget of the machine might become tighter

• Influence from crab cavities on scattered p trajectories should be negligible (H. Burkhardt)

• For detector instrumentation: the pileup:
m £ 200 (w/o levelling, w/o crab cav.)
m £ 140 (w/ levelling, w/ crab cav.)

• Radiation issues
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XRP Insertion Distance vs. b*
Assume insertion rule: dXRP = (nTCT + 3)sXRP + 0.3 mm
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Collimation scheme presently foreseen:
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Dispersion vs. Crossing-Angle
MAD-X simulations:
• (ax/2, ay/2, bx*, by*) = (295 mrad, 0, 15 cm, 15 cm):

Dx(196m) = -32.0 mm, Dx(220m) = -23.3 mm, Dx(234m) = -18.1 mm, Dx(420m) = +1862 mm
• (ax/2, ay/2, bx*, by*) = (0, 295 mrad, 15 cm, 15 cm):

Dx(196m) = -104 mm, Dx(220m) = -106 mm,  Dx(234m) = -108 mm,  Dx(420m) = +1928 mm
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s = 220 m: D’ = 0.281 mm / mrad

s = 234 m: D’ = 0.305 mm / mrad

Assume linearity: (confirmed by 2017 data).

s = 420 m: D’ = -0.224 mm / mrad
s = 196 m: D’ = 0.244 mm / mrad

|D
x| 

[m
m

]



p. 23Mario Deile   –

Maximum Mass: General Principle
Mmax is given by the tightest aperture cut of all TCL collimators upstream of the detector.
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Collimation strategy for TCLs presently foreseen:
dTCL = 14.2 s(b*=15cm) constant in absolute distance

Dispersion at TCLX.4, TCL.5, TCL.6 vs. crossing-angle
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Mmax depends only on a/2, not on b* !



x-Dependence of the Dispersion: Horizontal Crossing

TCLs

TCLX.4

TCL.5

TCL.6

Baseline Trajectory (ax/2 = 250 mrad)

D @ TCLs increases with x
à max. mass cut tighter than anticipated
using D(x=0)

XRPs

420 m

220 m

196 m

234 m
B

ea
m

 P
ip

e 
C

ut
 (x

< 
0.

01
2)

TC
LX

.4
 C

ut

TC
L.

5 
C

ut

TC
L.

6 
C

ut

For small x (within acceptance): approximately linear
à extended dispersion model:

xaxaxa
axxa 22

,
2 0 dddDD +++=÷

ø
ö

ç
è
æ



x-Dependence of the Dispersion: Vertical Crossing
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x-Dependence of the Dispersion: Vertical Crossing
Baseline Trajectory (ay/2 = 250 mrad)
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Vertical Dispersion
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Minimum “Mass” @ 196 m with x-Dependent D
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Inclusion of x-dependence improved Mmin by:
Horiz., baseline: ~580 GeV (20%)
Vert.:                  ~100 GeV (10%)
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Minimum “Mass” @ 234 with x-Dependent D
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assuming that the pots move during the fill
to adapt to b* !

Inclusion of x-dependence improved Mmin by:
Horiz., baseline: ~100 GeV (10%)
Vert.:                  ~    5 GeV (2%)

Insertion distances more aggressive (< 1.5 mm)
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Aperture Study: Horizontal Crossing

Horizontal tracks
with different x
(from MAD-X)

Baseline Levelling Trajectory (a/2 = 250 mrad)
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For s > 306 m or x < 0.07: TCL.6 is not the aperture limitation !
Protons run into the beampipe.

xmax(420m) =
0.012, not 0.072



Maximum Mass: Horizontal Crossing

x m
ax

TCLX.4  determines Mmax at 196 m

TCL.5    determines Mmax at 220 m

TCL.6    determines Mmax at 234 m

Beam pipe aperture determines Mmax at 420 m
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x a== à quadratic equation for xmax

dashed: naive calculation with x-independent D



Aperture Study: Vertical Crossing

For s > 315 m or x < 0.026: TCL.6 is not the aperture limitation !
Protons run into the beampipe.
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Maximum x from Aperture: Vertical Crossing

hitting top wallhitting bottom wall

Baseline Levelling Trajectory (ay/2 = 250 mrad)

hitting x<0 wallhitting x>0 wall
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Repeat this as a function of ay/2,
at each ay/2 look for the horizontal and vertical bottleneck upstream of each detector location.
à |x|max(ay/2) for each detector location



Maximum Mass from Aperture: Vertical Crossing

horizontal and vertical aperture determine
Mmax at 196 m

horizontal aperture determines Mmax at 220 m

horizontal aperture determines Mmax at 234 m
horizontal aperture determines Mmax at 420 m

hori. aperture
(TCL4)

hori. aperture
(TCL5)
hori. aperture (TCL6)
hori. aperture (beam pipe)

Take minimum of horizontal and vertical aperture limitations.

For vertical crossing the maximum mass is independent of the crossing-angle
(except at 196 m location for a/2 > 240 mrad).

196 m
220 m
234 m
420 m

x m
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Mass Acceptance Integrated over y: Principle
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Reminder: this is for t1 = t2 = 0 !
Including t would introduce process-dependent smearing.


